Suppr超能文献

水听器响应幅度和相位的时滞谱测量。

Time-delay spectrometry measurement of magnitude and phase of hydrophone response.

机构信息

US Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, MD, USA.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Nov;58(11):2325-33. doi: 10.1109/TUFFC.2011.2090.

Abstract

A method based on time-delay spectrometry (TDS) was developed for measuring both magnitude and phase response of a hydrophone. The method was tested on several types of hydrophones used in medical ultrasound exposimetry over the range from 5 to 18 MHz. These included polyvinylidene fluoride (PVDF) spot-poled membrane, needle, and capsule designs. One needle hydrophone was designed for high-intensity focused ultrasound (HIFU) applications. The average reproducibility (after repositioning the hydrophone) of the phase measurement was 2.4°. The minimum-phase model, which implies that the phase response is equal to the inverse Hilbert transform of the natural logarithm of the magnitude response, was tested with TDS hydrophone data. Direct TDS-based measurements of hydrophone phase responses agreed well with calculations based on the minimum-phase model, with rms differences of 1.76° (PVDF spot-poled membrane hydrophone), 3.10° (PVDF capsule hydrophone), 3.43° (PVDF needle hydrophone), and 3.36° (ceramic needle hydrophone) over the range from 5 to 18 MHz. Therefore, phase responses for several types of hydrophones may be inferred from measurements of their magnitude responses. Calculation of phase response based on magnitude response using the minimumphase model is a relatively simple and practical alternative to direct measurement of phase.

摘要

提出了一种基于延时谱法(TDS)的测量水听器幅度和相位响应的方法。该方法在 5MHz 至 18MHz 的范围内,对用于医学超声剂量学中的几种水听器进行了测试,包括聚偏二氟乙烯(PVDF)点极化膜、针状和胶囊式设计。其中一个针状水听器用于高强度聚焦超声(HIFU)应用。相位测量的平均重现性(重新定位水听器后)为 2.4°。最小相位模型,即相位响应等于幅度响应的自然对数的逆希尔伯特变换,用 TDS 水听器数据进行了测试。直接基于 TDS 的水听器相位响应测量与基于最小相位模型的计算吻合良好,在 5MHz 至 18MHz 的范围内,均方根差异分别为 1.76°(PVDF 点极化膜水听器)、3.10°(PVDF 胶囊水听器)、3.43°(PVDF 针状水听器)和 3.36°(陶瓷针状水听器)。因此,可以从水听器幅度响应的测量值推断出几种类型的水听器的相位响应。使用最小相位模型基于幅度响应计算相位响应是一种相对简单且实用的替代直接测量相位的方法。

相似文献

1
Time-delay spectrometry measurement of magnitude and phase of hydrophone response.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Nov;58(11):2325-33. doi: 10.1109/TUFFC.2011.2090.
2
Improved measurement of acoustic output using complex deconvolution of hydrophone sensitivity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jan;61(1):62-75. doi: 10.1109/TUFFC.2014.6689776.
3
Modeling of anomalies due to hydrophones in continuous-wave ultrasound fields.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Nov;50(11):1486-500. doi: 10.1109/tuffc.2003.1251132.
4
Temperature Dependence of the Sensitivity of Hydrophones for Biomedical Ultrasound Exposimetry.
IEEE Trans Ultrason Ferroelectr Freq Control. 2025 Mar;72(3):362-369. doi: 10.1109/TUFFC.2025.3527625. Epub 2025 Mar 17.
5
Hydrophone measurements in diagnostic ultrasound fields.
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(2):87-101. doi: 10.1109/58.4157.
7
Broadband PVDF membrane hydrophone for comparisons of hydrophone calibration methods up to 140 MHz.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Sep;54(9):1784-91. doi: 10.1109/tuffc.2007.462.
8
Voltage sensitivity response of ultrasonic hydrophones in the frequency range 0.25-2.5 MHz.
Ultrasound Med Biol. 1999 Sep;25(7):1131-7. doi: 10.1016/s0301-5629(99)00066-6.

引用本文的文献

1
Hydrophone Measurements for Biomedical Ultrasound Applications: A Review.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Feb;70(2):85-100. doi: 10.1109/TUFFC.2022.3213185. Epub 2023 Feb 6.
2
Spatiotemporal Deconvolution of Hydrophone Response for Linear and Nonlinear Beams-Part II: Experimental Validation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1257-1267. doi: 10.1109/TUFFC.2022.3150179. Epub 2022 Mar 30.
4
Correction for Hydrophone Spatial Averaging Artifacts for Circular Sources.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Dec;67(12):2674-2691. doi: 10.1109/TUFFC.2020.3007808. Epub 2020 Nov 24.
5
Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part II: Experimental Validation of Spatial Averaging Model.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):340-347. doi: 10.1109/TUFFC.2018.2886071. Epub 2018 Dec 10.
6
Considerations for Choosing Sensitive Element Size for Needle and Fiber-Optic Hydrophones-Part I: Spatiotemporal Transfer Function and Graphical Guide.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Feb;66(2):318-339. doi: 10.1109/TUFFC.2018.2886067. Epub 2018 Dec 10.
7
Directivity and Frequency-Dependent Effective Sensitive Element Size of a Reflectance-Based Fiber-Optic Hydrophone: Predictions From Theoretical Models Compared With Measurements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2343-2348. doi: 10.1109/TUFFC.2018.2872840. Epub 2018 Oct 1.
8
Directivity and Frequency-Dependent Effective Sensitive Element Size of Needle Hydrophones: Predictions From Four Theoretical Forms Compared With Measurements.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Oct;65(10):1781-1788. doi: 10.1109/TUFFC.2018.2855967. Epub 2018 Jul 13.
10
Pressure Pulse Distortion by Needle and Fiber-Optic Hydrophones due to Nonuniform Sensitivity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Feb;65(2):137-148. doi: 10.1109/TUFFC.2017.2778566.

本文引用的文献

1
Development of calibration techniques for ultrasonic hydrophone probes in the frequency range from 1 to 100 MHz.
Ultrasonics. 2009 Mar;49(3):306-11. doi: 10.1016/j.ultras.2008.09.011. Epub 2008 Oct 21.
2
A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Jan;55(1):84-93. doi: 10.1109/TUFFC.2008.619.
3
Application of time-delay spectrometry for calibration of ultrasonic transducers.
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(2):185-205. doi: 10.1109/58.4169.
4
Calibration of hydrophones based on reciprocity and time delay spectrometry.
IEEE Trans Ultrason Ferroelectr Freq Control. 1988;35(2):168-74. doi: 10.1109/58.4167.
5
An ultrasonic time-delay spectrometry system employing digital processing.
IEEE Trans Ultrason Ferroelectr Freq Control. 2007 May;54(5):1036-44. doi: 10.1109/tuffc.2007.349.
6
Progress in medical ultrasound exposimetry.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 May;52(5):717-36. doi: 10.1109/tuffc.2005.1503960.
8
Amplitude and phase calibration of hydrophones by heterodyne and time-gated time-delay spectrometry.
IEEE Trans Ultrason Ferroelectr Freq Control. 2003 Mar;50(3):344-8. doi: 10.1109/tuffc.2003.1193629.
9
Modeling acoustic attenuation of soft tissue with a minimum-phase filter.
Ultrason Imaging. 1984 Jan;6(1):24-36. doi: 10.1177/016173468400600103.
10
A new ultrasonic imaging system using time delay spectrometry.
Ultrasound Med Biol. 1974 Mar;1(2):119-31. doi: 10.1016/0301-5629(74)90002-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验