Suppr超能文献

定量光谱分析混合物:校正由于样品物理性质变化引起的乘法效应。

Quantitative spectroscopic analysis of heterogeneous mixtures: the correction of multiplicative effects caused by variations in physical properties of samples.

机构信息

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.

出版信息

Anal Chem. 2012 Jan 3;84(1):320-6. doi: 10.1021/ac202598f. Epub 2011 Dec 5.

Abstract

Spectral measurements of complex heterogeneous types of mixture samples are often affected by significant multiplicative effects resulting from light scattering, due to physical variations (e.g., particle size and shape, sample packing, and sample surface, etc.) inherent within the individual samples. Therefore, the separation of the spectral contributions due to variations in chemical compositions from those caused by physical variations is crucial to accurate quantitative spectroscopic analysis of heterogeneous samples. In this work, an improved strategy has been proposed to estimate the multiplicative parameters accounting for multiplicative effects in each measured spectrum and, hence, mitigate the detrimental influence of multiplicative effects on the quantitative spectroscopic analysis of heterogeneous samples. The basic assumption of the proposed method is that light scattering due to physical variations has the same effects on the spectral contributions of each of the spectroscopically active chemical components in the same sample mixture. On the basis of this underlying assumption, the proposed method realizes the efficient estimation of the multiplicative parameters by solving a simple quadratic programming problem. The performance of the proposed method has been tested on two publicly available benchmark data sets (i.e., near-infrared total diffuse transmittance spectra of four-component suspension samples and near-infrared spectral data of meat samples) and compared with some empirical approaches designed for the same purpose. It was found that the proposed method provided appreciable improvement in quantitative spectroscopic analysis of heterogeneous mixture samples. The study indicates that accurate quantitative spectroscopic analysis of heterogeneous mixture samples can be achieved through the combination of spectroscopic techniques with smart modeling methodology.

摘要

复杂的多相混合样品的光谱测量通常会受到显著的乘法效应的影响,这是由于单个样品中固有的物理变化(例如颗粒大小和形状、样品包装和样品表面等)导致的光散射。因此,将化学成分变化引起的光谱贡献与物理变化引起的光谱贡献分离对于多相样品的准确定量光谱分析至关重要。在这项工作中,提出了一种改进的策略来估计每个测量光谱中的乘法参数,从而减轻乘法效应对多相样品定量光谱分析的不利影响。所提出方法的基本假设是,物理变化引起的光散射对同一样品混合物中每个光谱活性化学组分的光谱贡献具有相同的影响。基于这一基本假设,所提出的方法通过求解一个简单的二次规划问题来实现乘法参数的有效估计。所提出的方法的性能已在两个公开可用的基准数据集(即四组分悬浮样品的近红外总漫透射光谱和肉样品的近红外光谱数据)上进行了测试,并与一些专门为此目的设计的经验方法进行了比较。结果表明,所提出的方法在多相混合物样品的定量光谱分析中提供了显著的改进。该研究表明,通过将光谱技术与智能建模方法相结合,可以实现多相混合物样品的准确定量光谱分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验