Suppr超能文献

一个单域变构调节学说可以解释 G 蛋白偶联受体的变构调节。

A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation.

机构信息

Drug Discovery Biology, Medicinal Chemistry, and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia.

Drug Discovery Biology, Medicinal Chemistry, and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia.

出版信息

J Biol Chem. 2012 Jan 2;287(1):650-659. doi: 10.1074/jbc.M111.314278. Epub 2011 Nov 15.

Abstract

The Monod-Wyman-Changeux (MWC) model was initially proposed to describe the allosteric properties of regulatory enzymes and subsequently extended to receptors. Yet despite GPCRs representing the largest family of receptors and drug targets, no study has systematically evaluated the MWC mechanism as it applies to GPCR allosteric ligands. We reveal how the recently described allosteric modulator, benzyl quinolone carboxylic acid (BQCA), behaves according to a strict, two-state MWC mechanism at the M1 muscarinic acetylcholine receptor (mAChR). Despite having a low affinity for the M1 mAChR, BQCA demonstrated state dependence, exhibiting high positive cooperativity with orthosteric agonists in a manner that correlated with efficacy but negative cooperativity with inverse agonists. The activity of BQCA was significantly increased at a constitutively active M1 mAChR but abolished at an inactive mutant. Interestingly, BQCA possessed intrinsic signaling efficacy, ranging from near-quiescence to full agonism depending on the coupling efficiency of the chosen intracellular pathway. This latter cellular property also determined the difference in magnitude of positive cooperativity between BQCA and the orthosteric agonist, carbachol, across pathways. The lack of additional, pathway-biased, allosteric modulation by BQCA was confirmed in genetically engineered yeast strains expressing different chimeras between the endogenous yeast G(pa1) protein and human Gα subunits. These findings define a chemical biological framework that can be applied to the study and classification of allosteric modulators across different GPCR families.

摘要

莫诺德-怀曼-钱卓(MWC)模型最初被提议用来描述调节酶的变构特性,随后扩展到受体。然而,尽管 G 蛋白偶联受体(GPCR)是最大的受体家族和药物靶点,但没有研究系统地评估 MWC 机制是否适用于 GPCR 的变构配体。我们揭示了最近描述的变构调节剂苯并喹啉羧酸(BQCA)在 M1 毒蕈碱乙酰胆碱受体(mAChR)上如何按照严格的两态 MWC 机制发挥作用。尽管 BQCA 对 M1 mAChR 的亲和力较低,但它表现出状态依赖性,与激动剂呈高正协同性,与效力相关,但与反向激动剂呈负协同性。BQCA 在组成性激活的 M1 mAChR 上的活性显著增加,但在无活性突变体上则被消除。有趣的是,BQCA 具有内在的信号转导效力,根据所选细胞内途径的偶联效率,从近乎静止到完全激动剂不等。这种内在的细胞特性也决定了 BQCA 与激动剂 carbachol 之间的正协同性在不同途径之间的幅度差异。在表达内源性酵母 G(pa1)蛋白和人 Gα亚基之间不同嵌合体的基因工程酵母菌株中,BQCA 缺乏对途径有偏向的额外变构调节作用,这一点得到了证实。这些发现定义了一个化学生物学框架,可以应用于不同 GPCR 家族的变构调节剂的研究和分类。

相似文献

1
A Monod-Wyman-Changeux mechanism can explain G protein-coupled receptor (GPCR) allosteric modulation.
J Biol Chem. 2012 Jan 2;287(1):650-659. doi: 10.1074/jbc.M111.314278. Epub 2011 Nov 15.
2
Molecular determinants of allosteric modulation at the M1 muscarinic acetylcholine receptor.
J Biol Chem. 2014 Feb 28;289(9):6067-79. doi: 10.1074/jbc.M113.539080. Epub 2014 Jan 17.
3
Probing the binding site of novel selective positive allosteric modulators at the M muscarinic acetylcholine receptor.
Biochem Pharmacol. 2018 Aug;154:243-254. doi: 10.1016/j.bcp.2018.05.009. Epub 2018 May 17.
5
Allosteric modulation of M1 muscarinic acetylcholine receptor internalization and subcellular trafficking.
J Biol Chem. 2014 May 30;289(22):15856-66. doi: 10.1074/jbc.M113.536672. Epub 2014 Apr 21.
6
Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15950-5. doi: 10.1073/pnas.0900903106. Epub 2009 Aug 26.
8
Mechanistic insights into allosteric structure-function relationships at the M1 muscarinic acetylcholine receptor.
J Biol Chem. 2014 Nov 28;289(48):33701-11. doi: 10.1074/jbc.M114.604967. Epub 2014 Oct 17.
9
Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor.
Mol Pharmacol. 2010 Jul;78(1):94-104. doi: 10.1124/mol.110.064345. Epub 2010 Apr 22.
10
6-Phenylpyrimidin-4-ones as Positive Allosteric Modulators at the M mAChR: The Determinants of Allosteric Activity.
ACS Chem Neurosci. 2019 Mar 20;10(3):1099-1114. doi: 10.1021/acschemneuro.8b00613. Epub 2018 Dec 28.

引用本文的文献

1
Identification of a Lipid-Exposed Extrahelical Binding Site for Positive Allosteric Modulators of the Dopamine D Receptor.
ACS Chem Neurosci. 2025 Jun 18;16(12):2295-2311. doi: 10.1021/acschemneuro.5c00105. Epub 2025 May 15.
2
A golden age of muscarinic acetylcholine receptor modulation in neurological diseases.
Nat Rev Drug Discov. 2024 Oct;23(10):743-758. doi: 10.1038/s41573-024-01007-1. Epub 2024 Aug 14.
3
G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery.
Signal Transduct Target Ther. 2024 Apr 10;9(1):88. doi: 10.1038/s41392-024-01803-6.
4
Characterization of a novel positive allosteric modulator of the α-Adrenergic receptor.
Curr Res Pharmacol Drug Discov. 2022 Dec 2;4:100142. doi: 10.1016/j.crphar.2022.100142. eCollection 2023.
5
Multitargeting nature of muscarinic orthosteric agonists and antagonists.
Front Physiol. 2022 Sep 6;13:974160. doi: 10.3389/fphys.2022.974160. eCollection 2022.
6
Targeting the M1 muscarinic acetylcholine receptor in Alzheimer's disease.
Neuronal Signal. 2022 Apr 21;6(1):NS20210004. doi: 10.1042/NS20210004. eCollection 2022 Apr.
8
Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias.
Front Pharmacol. 2021 Jan 29;11:606656. doi: 10.3389/fphar.2020.606656. eCollection 2020.
9
Restoring Agonist Function at a Chemogenetically Modified M Muscarinic Acetylcholine Receptor.
ACS Chem Neurosci. 2020 Dec 16;11(24):4270-4279. doi: 10.1021/acschemneuro.0c00540. Epub 2020 Nov 16.
10
β-Arrestin-Biased Allosteric Modulator of NTSR1 Selectively Attenuates Addictive Behaviors.
Cell. 2020 Jun 11;181(6):1364-1379.e14. doi: 10.1016/j.cell.2020.04.053. Epub 2020 May 28.

本文引用的文献

1
Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors.
Expert Opin Drug Discov. 2011 Aug;6(8):811-25. doi: 10.1517/17460441.2011.586691. Epub 2011 May 24.
2
Allostery in GPCRs: 'MWC' revisited.
Trends Biochem Sci. 2011 Dec;36(12):663-72. doi: 10.1016/j.tibs.2011.08.005. Epub 2011 Sep 14.
3
Pharmacological characterization of a small-molecule agonist for the chemokine receptor CXCR3.
Br J Pharmacol. 2012 Jun;166(3):898-911. doi: 10.1111/j.1476-5381.2011.01648.x.
4
The rise of fragment-based drug discovery.
Nat Chem. 2009 Jun;1(3):187-92. doi: 10.1038/nchem.217.
5
Therapeutic potential of β-arrestin- and G protein-biased agonists.
Trends Mol Med. 2011 Mar;17(3):126-39. doi: 10.1016/j.molmed.2010.11.004. Epub 2010 Dec 21.
6
Allosteric modulation of G protein-coupled receptors: a pharmacological perspective.
Neuropharmacology. 2011 Jan;60(1):24-35. doi: 10.1016/j.neuropharm.2010.07.010. Epub 2010 Jul 15.
7
Delineating the mode of action of adenosine A1 receptor allosteric modulators.
Mol Pharmacol. 2010 Sep;78(3):444-55. doi: 10.1124/mol.110.064568. Epub 2010 Jun 14.
8
Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor.
Mol Pharmacol. 2010 Jul;78(1):94-104. doi: 10.1124/mol.110.064345. Epub 2010 Apr 22.
9
The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies.
Neurosci Biobehav Rev. 2010 Jul;34(8):1307-50. doi: 10.1016/j.neubiorev.2010.04.001. Epub 2010 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验