School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.
Clin Pharmacokinet. 2011 Dec 1;50(12):759-72. doi: 10.2165/11596380-000000000-00000.
This review seeks to summarize the available data about Bayesian estimation of area under the plasma concentration-time curve (AUC) and dosage prediction for mycophenolic acid (MPA) and evaluate whether sufficient evidence is available for routine use of Bayesian dosage prediction in clinical practice. A literature search identified 14 studies that assessed the predictive performance of maximum a posteriori Bayesian estimation of MPA AUC and one report that retrospectively evaluated how closely dosage recommendations based on Bayesian forecasting achieved targeted MPA exposure. Studies to date have mostly been undertaken in renal transplant recipients, with limited investigation in patients treated with MPA for autoimmune disease or haematopoietic stem cell transplantation. All of these studies have involved use of the mycophenolate mofetil (MMF) formulation of MPA, rather than the enteric-coated mycophenolate sodium (EC-MPS) formulation. Bias associated with estimation of MPA AUC using Bayesian forecasting was generally less than 10%. However some difficulties with imprecision was evident, with values ranging from 4% to 34% (based on estimation involving two or more concentration measurements). Evaluation of whether MPA dosing decisions based on Bayesian forecasting (by the free website service https://pharmaco.chu-limoges.fr) achieved target drug exposure has only been undertaken once. When MMF dosage recommendations were applied by clinicians, a higher proportion (72-80%) of subsequent estimated MPA AUC values were within the 30-60 mg · h/L target range, compared with when dosage recommendations were not followed (only 39-57% within target range). Such findings provide evidence that Bayesian dosage prediction is clinically useful for achieving target MPA AUC. This study, however, was retrospective and focussed only on adult renal transplant recipients. Furthermore, in this study, Bayesian-generated AUC estimations and dosage predictions were not compared with a later full measured AUC but rather with a further AUC estimate based on a second Bayesian analysis. This study also provided some evidence that a useful monitoring schedule for MPA AUC following adult renal transplant would be every 2 weeks during the first month post-transplant, every 1-3 months between months 1 and 12, and each year thereafter. It will be interesting to see further validations in different patient groups using the free website service. In summary, the predictive performance of Bayesian estimation of MPA, comparing estimated with measured AUC values, has been reported in several studies. However, the next step of predicting dosages based on these Bayesian-estimated AUCs, and prospectively determining how closely these predicted dosages give drug exposure matching targeted AUCs, remains largely unaddressed. Further prospective studies are required, particularly in non-renal transplant patients and with the EC-MPS formulation. Other important questions remain to be answered, such as: do Bayesian forecasting methods devised to date use the best population pharmacokinetic models or most accurate algorithms; are the methods simple to use for routine clinical practice; do the algorithms actually improve dosage estimations beyond empirical recommendations in all groups that receive MPA therapy; and, importantly, do the dosage predictions, when followed, improve patient health outcomes?
本文旨在总结关于群体药代动力学模型预测美泊利珠单抗(MPA)药时曲线下面积(AUC)和剂量的现有数据,并评估贝叶斯剂量预测是否有足够的证据在临床实践中常规使用。通过文献检索,共识别出 14 项评估 MPA AUC 最大后验贝叶斯估计预测性能的研究,以及一项回顾性评估基于贝叶斯预测的剂量建议与目标 MPA 暴露程度接近程度的报告。迄今为止,这些研究主要在肾移植受者中进行,在接受 MPA 治疗自身免疫性疾病或造血干细胞移植的患者中进行的研究有限。所有这些研究都涉及到霉酚酸酯(MPA)的霉酚酸莫酯(MMF)制剂,而不是肠溶剂型麦考酚钠(EC-MPS)制剂。使用贝叶斯预测法估计 MPA AUC 的偏倚通常小于 10%。然而,已有证据表明,在不精确性方面存在一些困难,其值范围为 4%至 34%(基于涉及两个或更多浓度测量的估计)。仅评估了一次基于贝叶斯预测的 MPA 给药决策(通过免费网站服务 https://pharmaco.chu-limoges.fr)是否达到目标药物暴露。当临床医生应用 MMF 剂量建议时,随后估计的 MPA AUC 值中有更高比例(72%-80%)在 30-60mg·h/L 目标范围内,而不遵循剂量建议时,只有 39%-57%在目标范围内。这些发现提供了证据,表明贝叶斯剂量预测对于实现目标 MPA AUC 具有临床意义。然而,这项研究是回顾性的,仅关注成年肾移植受者。此外,在这项研究中,贝叶斯生成的 AUC 估计值和剂量预测值并未与随后的完整测量 AUC 进行比较,而是与基于第二次贝叶斯分析的进一步 AUC 估计值进行了比较。这项研究还提供了一些证据,表明成人肾移植后监测 MPA AUC 的有用方案是在移植后第一个月的每两周一次,在第 1 至 12 个月之间的每月一次至三个月一次,此后每年一次。有趣的是,看看在不同的患者群体中,免费网站服务是否能得到进一步的验证。总之,已经在几项研究中报告了贝叶斯估计 MPA 的预测性能,将估计值与测量值 AUC 进行了比较。然而,基于这些贝叶斯估计的 AUC 预测剂量,以及前瞻性地确定这些预测剂量与目标 AUC 匹配的药物暴露程度,在很大程度上仍未得到解决。需要进一步的前瞻性研究,特别是在非肾移植患者中,以及使用 EC-MPS 制剂。还有其他重要的问题有待回答,例如:迄今为止设计的贝叶斯预测方法是否使用了最佳的群体药代动力学模型或最准确的算法;这些方法是否易于在常规临床实践中使用;这些算法是否真的可以改善所有接受 MPA 治疗的人群中的剂量估计,而不仅仅是经验性建议;以及,重要的是,剂量预测是否在遵循后可以改善患者的健康结果?