Suppr超能文献

大麻素 CB2 受体通过 mTORC1 信号促进神经祖细胞增殖。

CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling.

机构信息

Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, Instituto Universitario de Investigación en Neuroquímica, and Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, 28040 Madrid, Spain.

出版信息

J Biol Chem. 2012 Jan 6;287(2):1198-209. doi: 10.1074/jbc.M111.291294. Epub 2011 Nov 18.

Abstract

The endocannabinoid system is known to regulate neural progenitor (NP) cell proliferation and neurogenesis. In particular, CB(2) cannabinoid receptors have been shown to promote NP proliferation. As CB(2) receptors are not expressed in differentiated neurons, CB(2)-selective agonists are promising candidates to manipulate NP proliferation and indirectly neurogenesis by overcoming the undesired psychoactive effects of neuronal CB(1) cannabinoid receptor activation. Here, by using NP cells, brain organotypic cultures, and in vivo animal models, we investigated the signal transduction mechanism involved in CB(2) receptor-induced NP cell proliferation and neurogenesis. Exposure of hippocampal HiB5 NP cells to the CB(2) receptor-selective agonist HU-308 led to the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway, which, by inhibiting its downstream target p27Kip1, induced NP proliferation. Experiments conducted with the CB(2) receptor-selective antagonist SR144528, inhibitors of the PI3K/Akt/mTORC1 axis, and CB(2) receptor transient-transfection vector further supported that CB(2) receptors control NP cell proliferation via activation of mTORC1 signaling. Likewise, CB(2) receptor engagement induced cell proliferation in an mTORC1-dependent manner both in embryonic cortical slices and in adult hippocampal NPs. Thus, HU-308 increased ribosomal protein S6 phosphorylation and 5-bromo-2'-deoxyuridine incorporation in wild-type but not CB(2) receptor-deficient NPs of the mouse subgranular zone. Moreover, adult hippocampal NP proliferation induced by HU-308 and excitotoxicity was blocked by the mTORC1 inhibitor rapamycin. Altogether, these findings provide a mechanism of action and a rationale for the use of nonpsychotomimetic CB(2) receptor-selective ligands as a novel strategy for the control of NP cell proliferation and neurogenesis.

摘要

内源性大麻素系统被认为可以调节神经祖细胞 (NP) 细胞的增殖和神经发生。特别是,CB(2) 大麻素受体已被证明可以促进 NP 增殖。由于 CB(2) 受体在分化神经元中不表达,因此 CB(2)-选择性激动剂是有前途的候选药物,可以通过克服神经元 CB(1) 大麻素受体激活的不良精神活性作用来操纵 NP 增殖和间接神经发生。在这里,我们通过使用 NP 细胞、脑器官型培养物和体内动物模型,研究了参与 CB(2) 受体诱导 NP 细胞增殖和神经发生的信号转导机制。将 CB(2) 受体选择性激动剂 HU-308 暴露于海马 HiB5 NP 细胞中,导致磷酸肌醇 3-激酶 (PI3K)/Akt/雷帕霉素靶蛋白复合物 1 (mTORC1) 途径的激活,该途径通过抑制其下游靶标 p27Kip1,诱导 NP 增殖。用 CB(2) 受体选择性拮抗剂 SR144528、PI3K/Akt/mTORC1 轴抑制剂和 CB(2) 受体瞬时转染载体进行的实验进一步支持 CB(2) 受体通过激活 mTORC1 信号来控制 NP 细胞增殖。同样,CB(2) 受体的结合以 mTORC1 依赖的方式诱导胚胎皮质切片和成年海马 NP 中的细胞增殖。因此,HU-308 增加了核糖体蛋白 S6 的磷酸化和 5-溴-2'-脱氧尿苷在野生型但不是 CB(2) 受体缺陷型小鼠颗粒下区 NP 中的掺入。此外,HU-308 诱导的成年海马 NP 增殖和兴奋性毒性被 mTORC1 抑制剂 rapamycin 阻断。总之,这些发现提供了一种作用机制,并为使用非精神激动性 CB(2) 受体选择性配体作为控制 NP 细胞增殖和神经发生的新策略提供了依据。

相似文献

1
CB2 cannabinoid receptors promote neural progenitor cell proliferation via mTORC1 signaling.
J Biol Chem. 2012 Jan 6;287(2):1198-209. doi: 10.1074/jbc.M111.291294. Epub 2011 Nov 18.
3
CB2 cannabinoid receptors promote mouse neural stem cell proliferation.
Eur J Neurosci. 2007 Feb;25(3):629-34. doi: 10.1111/j.1460-9568.2007.05322.x.
5
Anandamide-mediated CB1/CB2 cannabinoid receptor--independent nitric oxide production in rabbit aortic endothelial cells.
J Pharmacol Exp Ther. 2007 Jun;321(3):930-7. doi: 10.1124/jpet.106.117549. Epub 2007 Mar 22.
7
Ketamine affects the neurogenesis of rat fetal neural stem progenitor cells via the PI3K/Akt-p27 signaling pathway.
Birth Defects Res B Dev Reprod Toxicol. 2014 Oct;101(5):355-63. doi: 10.1002/bdrb.21119. Epub 2014 Sep 17.
8
Phosphatidylinositol 3-kinase signaling determines kidney size.
J Clin Invest. 2015 Jun;125(6):2429-44. doi: 10.1172/JCI78945. Epub 2015 May 18.

引用本文的文献

2
A systematic study of molecular targets of cannabidiol in Alzheimer's disease.
J Alzheimers Dis Rep. 2024 Oct 11;8(1):1339-1360. doi: 10.1177/25424823241284464. eCollection 2024.
4
Cannabis, Endocannabinoids and Brain Development: From Embryogenesis to Adolescence.
Cells. 2024 Nov 13;13(22):1875. doi: 10.3390/cells13221875.
8
Erratum: Palazuelos et al., "TACE/ADAM17 Is Essential for Oligodendrocyte Development and CNS Myelination".
J Neurosci. 2023 Dec 13;43(50):8825-8826. doi: 10.1523/JNEUROSCI.2047-23.2023.
9
Potential of olfactory neuroepithelial cells as a model to study schizophrenia: A focus on GPCRs (Review).
Int J Mol Med. 2024 Jan;53(1). doi: 10.3892/ijmm.2023.5331. Epub 2023 Dec 1.
10
Neuroinflammation in the Central Nervous System: Exploring the Evolving Influence of Endocannabinoid System.
Biomedicines. 2023 Sep 26;11(10):2642. doi: 10.3390/biomedicines11102642.

本文引用的文献

2
Endocannabinoids regulate the migration of subventricular zone-derived neuroblasts in the postnatal brain.
J Neurosci. 2011 Mar 16;31(11):4000-11. doi: 10.1523/JNEUROSCI.5483-10.2011.
3
Seizure-induced neurogenesis in the adult brain.
Eur J Neurosci. 2011 Mar;33(6):1133-8. doi: 10.1111/j.1460-9568.2011.07612.x.
4
RTP801/REDD1 regulates the timing of cortical neurogenesis and neuron migration.
J Neurosci. 2011 Mar 2;31(9):3186-96. doi: 10.1523/JNEUROSCI.4011-10.2011.
5
TSC1/TSC2 signaling in the CNS.
FEBS Lett. 2011 Apr 6;585(7):973-80. doi: 10.1016/j.febslet.2011.02.001. Epub 2011 Feb 15.
6
Rheb is essential for murine development.
Mol Cell Biol. 2011 Apr;31(8):1672-8. doi: 10.1128/MCB.00985-10. Epub 2011 Feb 14.
7
Rheb1 is required for mTORC1 and myelination in postnatal brain development.
Dev Cell. 2011 Jan 18;20(1):97-108. doi: 10.1016/j.devcel.2010.11.020.
9
CB1 and CB2 cannabinoid receptor expression during development and in epileptogenic developmental pathologies.
Neuroscience. 2010 Sep 29;170(1):28-41. doi: 10.1016/j.neuroscience.2010.07.004. Epub 2010 Jul 13.
10
Dynamic changes of CB1-receptor expression in hippocampi of epileptic mice and humans.
Epilepsia. 2010 Jul;51 Suppl 3(Suppl 3):115-20. doi: 10.1111/j.1528-1167.2010.02624.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验