Suppr超能文献

离散化与汇总:利用具有时间自相关性的有序分类数据对港海豹的潜水深度进行建模。

Discretized and aggregated: modeling dive depth of harbor seals from ordered categorical data with temporal autocorrelation.

作者信息

Higgs Megan D, Ver Hoef Jay M

机构信息

Department of Mathematical Sciences, P.O. Box 172400, Montana State University, Bozeman, Montana 59717, USA.

出版信息

Biometrics. 2012 Sep;68(3):965-74. doi: 10.1111/j.1541-0420.2011.01710.x. Epub 2011 Nov 25.

Abstract

Ordered categorical data are pervasive in environmental and ecological data, and often arise from constraints that require discretizing a continuous variable into ordered categories. A great deal of data have been collected toward the study of marine mammal dive behavior using satellite depth recorders (SDRs), which often discretize a continuous variable such as depth. Additionally, data storage or transmission constraints may also necessitate the aggregation of data over time intervals of a specified length. The categorization and aggregation create a time series of ordered multicategory counts for each animal, which present challenges in terms of statistical modeling and practical interpretation. We describe an intuitive strategy for modeling such aggregated, ordered categorical data allowing for inference regarding the category probabilities and a measure of central tendency on the original scale of the data (e.g., meters), along with incorporation of temporal correlation and overdispersion. The strategy extends covariate-specific cutpoint models for ordinal data. We demonstrate the method in an analysis of SDR dive-depth data collected on harbor seals in Alaska. The primary goal of the analysis is to assess the relationship of covariates, such as time of day, with number of dives and maximum depth of dives. We also predict missing values and introduce novel graphical summaries of the data and results.

摘要

有序分类数据在环境和生态数据中普遍存在,通常源于将连续变量离散化为有序类别的约束条件。为了研究海洋哺乳动物的潜水行为,人们使用卫星深度记录仪(SDR)收集了大量数据,这些记录仪常常将诸如深度这样的连续变量进行离散化处理。此外,数据存储或传输的限制也可能使得有必要在指定长度的时间间隔内对数据进行汇总。这种分类和汇总为每只动物创建了一个有序多类别计数的时间序列,这在统计建模和实际解释方面带来了挑战。我们描述了一种直观的策略,用于对这种汇总的有序分类数据进行建模,从而能够推断类别概率,并在数据的原始尺度(例如米)上衡量集中趋势,同时纳入时间相关性和过度离散。该策略扩展了用于有序数据的协变量特定切点模型。我们在对阿拉斯加港海豹收集的SDR潜水深度数据的分析中展示了该方法。分析的主要目标是评估诸如一天中的时间等协变量与潜水次数和最大潜水深度之间的关系。我们还预测缺失值,并引入数据和结果的新颖图形汇总。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验