Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea.
J Phys Condens Matter. 2011 Dec 21;23(50):505301. doi: 10.1088/0953-8984/23/50/505301. Epub 2011 Nov 30.
Using first-principles density functional theory, we investigate the adsorption properties of chalcogen elements (oxygen and sulfur) on an anionic golden nanocage Au(16)(-) and its effects on the structural and electronic properties of the golden cage. In particular, we find that when a sulfur atom is encapsulated inside Au(16)(-), its bonding character with Au atoms appears ionic due to electron transfer from sulfur to the gold nanocage. In contrast, the exohedrally adsorbed S atom tends to have strong orbital hybridization with the golden nanocage. For an oxygen adsorption case, electrons from the golden cage tend to be shared with the adsorbed O atom exhibiting strong orbital hybridization, regardless of its adsorption sites. To investigate the transition behaviors between the most stable exohedral and endohedral adsorption configurations, we calculate the activation and reaction energies in the transition. The oxygen atom experiences a lower energy barrier than the sulfur atom due to its smaller atomic radius. Finally, we explore the vibrational properties of S- or O-adsorbed Au(16)(-) buckyballs by calculating their infrared spectra.
我们运用第一性原理密度泛函理论,研究了硫、氧等拟卤元素在带负电荷的金纳米笼 Au(16)(-)上的吸附特性,以及这些元素对金笼结构和电子性质的影响。具体而言,我们发现当硫原子被包裹在 Au(16)(-)笼内时,由于电子从硫原子转移到金纳米笼,其与金原子的成键性质呈现离子键特征。相比之下,位于笼外的硫原子更容易与金纳米笼发生轨道杂化。对于氧原子的吸附情况,无论其吸附位置如何,来自金笼的电子都会与吸附的氧原子共享,从而表现出较强的轨道杂化。为了研究最稳定的笼外和笼内吸附构型之间的转变行为,我们计算了转变过程中的活化能和反应能。由于氧原子的原子半径较小,其经历的能量势垒比硫原子低。最后,我们通过计算红外光谱,研究了 S 或 O 原子吸附 Au(16)(-)巴克球的振动特性。