Carpi Federico, Erb Rainer, Jeronimidis George
University of Pisa, Interdepartmental Research Centre 'E. Piaggio', Italy and Technology & Life Institute, Pisa, Italy.
Bioinspir Biomim. 2011 Dec;6(4):040201. doi: 10.1088/1748-3182/6/4/040201. Epub 2011 Nov 29.
Movement in biology is an essential aspect of survival for many organisms, animals and plants. Implementing movement efficiently to meet specific needs is a key attribute of natural living systems, and can provide ideas for man-made developments. If we had to find a subtitle able to essentially convey the aim of this special section, it could read as follows: 'taking inspiration from nature for new materials, actuators, structures and controls for systems that move'. Our world is characterized by a huge variety of technical, engineering systems that move. They surround us in countless products that integrate actuators for different kinds of purposes. Basically, any kind of mechatronic system, such as those used for consumer products, machines, vehicles, industrial systems, robots, etc, is based on one or more devices that move, according to different implementations and motion ranges, often in response to external and internal stimuli. Despite this, technical solutions to develop systems that move do not evolve very quickly as they rely on traditional and well consolidated actuation technologies, which are implemented according to known architectures and with established materials. This fact limits our capability to overcome challenges related to the needs continuously raised by new fields of application, either at small or at large scales. Biomimetics-based approaches may provide innovative thinking and technologies in the field, taking inspiration from nature for smart and effective solutions. In an effort to disseminate current advances in this field, this special section collects some papers that cover different topics. A brief synopsis of the content of each contribution is presented below. The first paper, by Lienhard et al [1], deals with bioinspiration for the realization of structural parts in systems that passively move. It presents a bioinspired hingeless flapping mechanism, considered as a solution to the kinematics of deployable systems for architectural structures. The approach relies on structural elasticity to replace the need for local hinges. To this end, the authors have used fibre-reinforced polymers combining high tensile strength with low bending stiffness. The solution favours lower structural complexity as well as higher design versatility. Bioinspiration from the elastic kinetics of plants is a central pillar of the paper, which highlights the interrelation of form, actuation and kinematics in those natural systems. The second paper, by Nakata et al [2], deals with bioinspired systems that actively move, and, more specifically, fly. The paper is about the aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle conceived to fly in a Reynolds number regime used by most natural flyers, including insects, bats and birds. The paper presents a study of the flexible wing aerodynamics of the flapping vehicle by combining an in-house computational fluid dynamic model with wind tunnel experiments. In particular, the developed model is shown to be able to predict unsteady aerodynamics in terms of vortex and wake structures and their relationship with aerodynamic force generation. Simulations are validated by wind tunnel experiments, confirming the effectiveness of the adopted design solutions, as well as the importance of wing flexibility in designing small flapping-wing vehicles. The third paper, by Annunziata et al [3], deals with bioinspired control strategies for systems that move. In particular, the paper describes approaches to increase the stiffness variability in multi-muscle driven joints. Different strategies for simultaneous control of torque and stiffness in a hinge joint actuated by two antagonistic muscle pairs are presented. The proposed strategies combine torque and stiffness control by co-activation with approaches based on activation overflow and inverse modelling. Extensive simulations are performed and described to assess the control efficacy. In the fourth paper, Merker et al [4] present a study on stable walking with asymmetric legs. The authors are concerned with the need to clarify to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. A bipedal spring-mass model simulating walking with compliant legs is used to show that even remarkable differences between contralateral legs can not only be tolerated, but may also introduce advantages to the robustness of the system dynamics. This study might contribute to shedding light on the stability of asymmetric leg walking, including the potential benefits of asymmetry, with possible implications for design of prosthetic or orthotic systems. The last two papers of this special section deal with active bioinspired systems driven by new actuators made of smart materials. In particular, the paper authored by Rossi et al [5] presents an underwater fish-like robot based on bending structures driven by shape memory alloys. These kinds of actuators are used to bend the backbone of the fish, which in turn causes a change in the curvature of the fish body. The paper describes the mechanisms by which standard swimming patterns can be reproduced with the proposed design, and show characterizations in terms of the actuation speed and position accuracy of prototype systems. The last paper, by Carpi et al [6], presents an overview on ionic- and electronic-type electromechanically active polymer actuators as artificial muscles for bioinspired applications. The electrical responsiveness and numerous functional and structural properties that these materials and actuators have in common with natural muscles are shown to be the key motivation by which they are studied as artificial muscles for a huge variety of possible uses. The authors describe the fundamental aspects of relevant technologies and emphasize how after several years of basic research, electromechanically active polymer actuators are today facing their important initial transition from academia into commercialization. In conclusion, we hope that the selection of papers in this special section might help to provide readers with a balanced overview, through examples on the relevant fundamental aspects, materials, actuators, structures, controls and on their effective integration, in order to develop approaches which will be successful in 'taking inspiration from nature for systems that move'. References [1] Lienhard J, Schleicher S, Poppinga S, Masselter T, Milwich M, Speck T and Knippers J 2011 Flectofin: a hingeless flapping mechanism inspired by nature Bioinsp. Biomim. 6 045001 [2] Nakata T, Liu H, Tanaka Y, Nishihashi N, Wang X and Sato A 2011 Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle Bioinsp. Biomim. 6 045002 [3] Annunziata S, Paskarbeit J and Schneider A 2011 Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints Bioinsp. Biomim. 6 045003 [4] Merker A, Rummel J and Seyfarth A 2011 Stable walking with asymmetric legs Bioinsp. Biomim. 6 045004 [5] Rossi C, Colorado J, Coral W and Barrientos A 2011 Bending continuous structures with SMAs: a novel robotic fish design Bioinsp. Biomim. 6 045005 [6] Carpi F, Kornbluh R, Sommer-Larsen P and Alici G 2011 Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinsp. Biomim. 6 045006.
在生物学中,运动是许多生物(包括动物和植物)生存的一个重要方面。高效地实现运动以满足特定需求是自然生命系统的一个关键属性,并且能为人工开发提供思路。如果我们要找到一个能基本传达本专题主旨的副标题,它可以是这样的:“从自然中汲取灵感,用于开发运动系统的新材料、致动器、结构和控制方法”。我们的世界以各种各样能够运动的技术和工程系统为特征。它们存在于无数集成了用于各种目的致动器的产品之中。基本上,任何一种机电一体化系统,比如用于消费品、机器、车辆、工业系统、机器人等的系统,都是基于一个或多个根据不同实现方式和运动范围运动的装置,这些装置通常会对外界和内部刺激做出反应。尽管如此,由于依赖传统且成熟的驱动技术,按照已知架构并使用既定材料来开发运动系统的技术解决方案并没有快速发展。这一事实限制了我们应对新应用领域不断提出的各种需求(无论规模大小)所带来挑战的能力。基于仿生学的方法可能会在该领域提供创新思维和技术,从自然中获取智能且有效的解决方案。为了传播该领域的当前进展,本专题收集了一些涵盖不同主题的论文。以下是对每篇论文内容的简要概述。第一篇论文由利恩哈德等人撰写[1],探讨了用于实现被动运动系统中结构部件的生物启发。它提出了一种受生物启发的无铰链扑翼机构,被视为建筑结构可展开系统运动学的一种解决方案。该方法依靠结构弹性来取代局部铰链的需求。为此,作者使用了兼具高拉伸强度和低弯曲刚度的纤维增强聚合物。这种解决方案有利于降低结构复杂性并提高设计通用性。从植物的弹性动力学中获取生物启发是该论文的核心支柱,它突出了这些自然系统中形态、驱动和运动学之间的相互关系。第二篇论文由中田等人撰写[2],探讨了受生物启发的主动运动系统,更具体地说是飞行系统。该论文研究的是一种受生物启发的柔性扑翼微型飞行器的空气动力学,这种飞行器设计用于在包括昆虫、蝙蝠和鸟类在内的大多数自然飞行生物所使用的雷诺数范围内飞行。该论文通过将内部计算流体动力学模型与风洞实验相结合,对扑翼飞行器的柔性机翼空气动力学进行了研究。特别是,所开发的模型能够在涡旋和尾流结构及其与气动力产生的关系方面预测非定常空气动力学。风洞实验验证了模拟结果,证实了所采用设计方案的有效性,以及机翼柔性在设计小型扑翼飞行器中的重要性。第三篇论文由安农齐亚塔等人撰写[3],探讨了用于运动系统的受生物启发的控制策略。特别是,该论文描述了增加多肌肉驱动关节刚度变化性的方法。提出了在由两对拮抗肌肉驱动的铰链接头中同时控制扭矩和刚度的不同策略。所提出的策略将通过共同激活实现的扭矩和刚度控制与基于激活溢出和逆建模的方法相结合。进行并描述了广泛的模拟以评估控制效果。第四篇论文中,默克等人[4]对不对称腿部的稳定行走进行了研究。作者关注的是在行走或跑步过程中,对侧肢体腿部功能差异能够被容忍的程度这一问题。一个模拟具有柔顺腿部行走的双足弹簧质量模型被用于表明,即使对侧腿部之间存在显著差异,不仅能够被容忍,而且可能还会给系统动力学的稳健性带来优势。这项研究可能有助于阐明不对称腿部行走的稳定性,包括不对称性的潜在益处,这可能对假肢或矫形系统的设计产生影响。本专题的最后两篇论文涉及由智能材料制成的新型致动器驱动的主动受生物启发系统。特别是,罗西等人撰写的论文[5]展示了一种基于形状记忆合金驱动的弯曲结构的水下类鱼机器人。这类致动器用于使鱼的脊椎弯曲,进而导致鱼体曲率发生变化。该论文描述了通过所提出的设计能够重现标准游泳模式的机制,并展示了原型系统在驱动速度和位置精度方面的特性。最后一篇论文由卡尔皮等人撰写[6],对作为用于受生物启发应用的人工肌肉的离子型和电子型机电活性聚合物致动器进行了概述。这些材料和致动器与天然肌肉共有的电响应性以及众多功能和结构特性,被证明是它们作为用于各种可能用途的人工肌肉进行研究的关键动机。作者描述了相关技术的基本方面,并强调经过数年的基础研究,机电活性聚合物致动器如今正面临从学术界向商业化的重要初步转变。总之,我们希望本专题所选的论文能够通过相关基础方面、材料、致动器、结构、控制以及它们有效整合的示例,为读者提供一个全面的概述,以便开发出能够成功“从自然中汲取灵感用于运动系统”的方法。参考文献 [1] 利恩哈德 J、施莱歇尔 S、波平加 S、马塞尔特 T、米尔维希 M、施佩克 T 和克尼珀斯 J 2011 年 《Flectofin:一种受自然启发的无铰链扑翼机构》 《生物启发与仿生学》6 卷 045001 期 [2] 中田 T、刘 H、田中 Y、西桥 N、王 X 和佐藤 A 2011 年 《一种受生物启发的柔性扑翼微型飞行器的空气动力学》 《生物启发与仿生学》6 卷 045002 期 [3] 安农齐亚塔 S、帕斯卡贝特 J 和施耐德 A 2011 年 《增加多肌肉驱动关节刚度变化性的新型受生物启发控制方法》 《生物启发与仿生学》6 卷 045003 期 [4] 默克 A、鲁梅尔 J 和塞法特 A 2011 年 《不对称腿部的稳定行走》 《生物启发与仿生学》6 卷 045004 期 [5] 罗西 C、科罗拉多 J、科拉尔 W 和巴里恩托斯 A 2011 年 《用形状记忆合金弯曲连续结构:一种新型机器人鱼设计》 《生物启发与仿生学》6 卷 045005 期 [6] 卡尔皮 F、科恩布卢 R、索默 - 拉森 P 和阿利奇 G 2011 年 《电活性聚合物致动器作为人工肌肉:它们准备好用于受生物启发的应用了吗?》 《生物启发与仿生学》6 卷 045006 期