Suppr超能文献

在并行激发脉冲设计中包含测量电场相互作用的特定吸收率益处。

Specific absorption rate benefits of including measured electric field interactions in parallel excitation pulse design.

机构信息

Center for Biomedical Imaging, Department of Radiology, New York University, School of Medicine, New York, New York, USA.

出版信息

Magn Reson Med. 2012 Jan;67(1):164-74. doi: 10.1002/mrm.23004. Epub 2011 Aug 29.

Abstract

Specific absorption rate management and excitation fidelity are key aspects of radiofrequency pulse design for parallel transmission at ultra-high magnetic field strength. The design of radiofrequency pulses for multiple channels is often based on the solution of regularized least-squares optimization problems for which a regularization term is typically selected to control the integrated or peak pulse waveform amplitude. Unlike single-channel transmission, the specific absorption rate of parallel transmission is significantly influenced by interferences between the electric fields associated with the individual transmission elements, which a conventional regularization term does not take into account. This work explores the effects upon specific absorption rate of incorporating experimentally measurable electric field interactions into parallel transmission pulse design. Results of numerical simulations and phantom experiments show that the global specific absorption rate during parallel transmission decreases when electric field interactions are incorporated into pulse design optimization. The results also show that knowledge of electric field interactions enables robust prediction of the net power delivered to the sample or subject by parallel radiofrequency pulses before they are played out on a scanner.

摘要

特定吸收率管理和激励保真度是超高场强下并行传输的射频脉冲设计的关键方面。多通道射频脉冲的设计通常基于正则化最小二乘优化问题的解决方案,通常选择正则化项来控制集成或峰值脉冲波形幅度。与单通道传输不同,并行传输的特定吸收率受与各个传输元件相关的电场之间干扰的显著影响,常规正则化项不考虑这种干扰。这项工作探讨了将实验可测量的电场相互作用纳入并行传输脉冲设计对特定吸收率的影响。数值模拟和体模实验的结果表明,当将电场相互作用纳入脉冲设计优化时,并行传输过程中的全局特定吸收率会降低。结果还表明,电场相互作用的知识使得能够在并行射频脉冲在扫描仪上播放之前,对样本或对象接收到的净功率进行稳健预测。

相似文献

1
Specific absorption rate benefits of including measured electric field interactions in parallel excitation pulse design.
Magn Reson Med. 2012 Jan;67(1):164-74. doi: 10.1002/mrm.23004. Epub 2011 Aug 29.
2
Signal-domain optimization metrics for MPRAGE RF pulse design in parallel transmission at 7 tesla.
Magn Reson Med. 2016 Nov;76(5):1431-1442. doi: 10.1002/mrm.26043. Epub 2015 Nov 24.
4
A specific absorption rate prediction concept for parallel transmission MR.
Magn Reson Med. 2012 Nov;68(5):1664-74. doi: 10.1002/mrm.24138. Epub 2012 Jan 9.
5
Reducing SAR in parallel excitation using variable-density spirals: a simulation-based study.
Magn Reson Imaging. 2008 Oct;26(8):1122-32. doi: 10.1016/j.mri.2008.02.003. Epub 2008 Apr 28.
7
Array-compressed parallel transmit pulse design.
Magn Reson Med. 2016 Oct;76(4):1158-69. doi: 10.1002/mrm.26020. Epub 2015 Oct 28.
8
Optimal design of multiple-channel RF pulses under strict power and SAR constraints.
Magn Reson Med. 2010 May;63(5):1280-91. doi: 10.1002/mrm.22330.
9
Subject- and resource-specific monitoring and proactive management of parallel radiofrequency transmission.
Magn Reson Med. 2016 Jul;76(1):20-31. doi: 10.1002/mrm.25828. Epub 2015 Jul 21.

引用本文的文献

1
Rigid motion-resolved prediction using deep learning for real-time parallel-transmission pulse design.
Magn Reson Med. 2022 May;87(5):2254-2270. doi: 10.1002/mrm.29132. Epub 2021 Dec 27.
2
Accelerated calibrationless parallel transmit mapping using joint transmit and receive low-rank tensor completion.
Magn Reson Med. 2021 Nov;86(5):2454-2467. doi: 10.1002/mrm.28880. Epub 2021 Jul 1.
3
A formalism to investigate the optimal transmit efficiency in radiofrequency shimming.
NMR Biomed. 2020 Nov;33(11):e4383. doi: 10.1002/nbm.4383. Epub 2020 Jul 28.
4
RF system calibration for global Q matrix determination.
Magn Reson Imaging. 2016 Jun;34(5):690-3. doi: 10.1016/j.mri.2015.12.039. Epub 2015 Dec 30.
7
Parallel transmission for ultrahigh-field imaging.
NMR Biomed. 2016 Sep;29(9):1145-61. doi: 10.1002/nbm.3313. Epub 2015 May 19.
9
A method for safety testing of radiofrequency/microwave-emitting devices using MRI.
Magn Reson Med. 2015 Nov;74(5):1397-405. doi: 10.1002/mrm.25521. Epub 2014 Nov 25.
10
Parallel Excitation in Ultrahigh Field Human MR Imaging and Multi-Channel Transmit System.
OMICS J Radiol. 2012 May;1(3):e110. doi: 10.4172/2167-79641000e110.

本文引用的文献

1
A k-space analysis of small-tip-angle excitation. 1989.
J Magn Reson. 2011 Dec;213(2):544-57. doi: 10.1016/j.jmr.2011.09.023.
2
Optimal design of multiple-channel RF pulses under strict power and SAR constraints.
Magn Reson Med. 2010 May;63(5):1280-91. doi: 10.1002/mrm.22330.
4
Specific absorption rate studies of the parallel transmission of inner-volume excitations at 7T.
J Magn Reson Imaging. 2008 Oct;28(4):1005-18. doi: 10.1002/jmri.21548.
5
Reducing SAR in parallel excitation using variable-density spirals: a simulation-based study.
Magn Reson Imaging. 2008 Oct;26(8):1122-32. doi: 10.1016/j.mri.2008.02.003. Epub 2008 Apr 28.
6
Additive angle method for fast large-tip-angle RF pulse design in parallel excitation.
Magn Reson Med. 2008 Apr;59(4):779-87. doi: 10.1002/mrm.21510.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验