Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic.
J Phys Chem A. 2012 Jan 12;116(1):778-83. doi: 10.1021/jp2105192. Epub 2011 Dec 21.
Magnetic circular dichroism (MCD) spectroscopy provides valuable information about electronic excited states in molecules. The interpretation of spectra is however difficult, often requiring additional theoretical calculations to rationalize the observed signal. Recent developments in time-dependent density functional theory (TDDFT) bring hope that the applicability of MCD spectroscopy for chemical problems may be significantly extended. In this study, two modern analytical TDDFT implementations are compared and used to understand experimental MCD spectra of a model porphyrin system upon protonation. Changes in porphyrin geometry and electronic structure are related to MCD intensities by comparing the spectra of 5,10,15,20-tetraphenyl-21H,23H-porphyrintetrasulfonic acid (TPPS) measured at different pH values with the TDDFT calculations. Although the theoretical results slightly depended on the chosen exchange-correlation functional, the computations provided MCD curves that could well rationalize the experimental data. The protonation of the porphyrin core causes marked changes in the MCD spectrum, whereas the role of the substituents is limited. Also, different conformations of the porphyrin substituents cause relatively minor changes of the MCD pattern, mostly in the Soret region, where the porphine and phenyl electronic transitions start to mix. The solvent environment simulated by the dielectric model caused a shift (~20 nm) of the absorption bands but only minor variations in the absorption and MCD spectral shapes. The study thus demonstrates that the recently available first-principles interpretations of MCD spectra significantly enhance the applicability of the technique for molecular structural studies.
磁圆二色性(MCD)光谱提供了有关分子中电子激发态的有价值的信息。然而,谱线的解释却很困难,通常需要额外的理论计算来合理化观察到的信号。时间依赖密度泛函理论(TDDFT)的最新发展带来了希望,即 MCD 光谱在化学问题中的应用可能会得到显著扩展。在这项研究中,两种现代分析性 TDDFT 实现方法进行了比较,并用于理解模型卟啉体系在质子化时的实验 MCD 光谱。通过比较在不同 pH 值下测量的 5,10,15,20-四苯基-21H,23H-卟啉四磺酸(TPPS)的光谱,将卟啉几何形状和电子结构的变化与 MCD 强度相关联,与 TDDFT 计算结果进行比较。尽管理论结果在一定程度上取决于所选的交换相关泛函,但计算结果提供了可以很好地合理化实验数据的 MCD 曲线。卟啉核的质子化会导致 MCD 光谱发生明显变化,而取代基的作用则有限。此外,卟啉取代基的不同构象会导致 MCD 图案的相对较小变化,主要在 Soret 区域,其中卟啉和苯基电子跃迁开始混合。介电模型模拟的溶剂环境会导致吸收带的位移(约 20nm),但对吸收和 MCD 光谱形状的变化很小。因此,该研究表明,最近可用的 MCD 光谱的第一性原理解释大大增强了该技术在分子结构研究中的适用性。