Fritz-Haber-Institut der Max-Planck-Gesellschaft, Abteilung für Anorganische Chemie, Faradayweg 4-6, D-14195 Berlin, Germany.
Phys Chem Chem Phys. 2012 Jan 21;14(3):1302-12. doi: 10.1039/c1cp23462e. Epub 2011 Dec 7.
We have developed a noncontact method to probe the electrical conductivity and complex permittivity of single and polycrystalline samples in a flow-through reactor in the temperature range of 20-500 °C and in various gas atmospheres. The method is based on the microwave cavity perturbation technique and allows the simultaneous measurement of microwave conductivity, permittivity and of the catalytic performance of heterogeneous catalysts without any need for contacting the sample with electrodes. The sensitivity of the method towards changes in bulk properties was proven by the investigation of characteristic first-order phase transitions of the ionic conductor rubidium nitrate in the temperature range between 20 and 320 °C, and by studying the temperature dependence of the complex permittivity and conductivity of a niobium(V)-doped vanadium-phosphorous-oxide catalyst for the selective oxidation of n-butane to maleic anhydride. Simultaneously, the catalytic performance was probed by on line GC analysis of evolving product gases making the technique a real in situ method enabling the noninvasive investigation of electronic structure-function relationships.
我们开发了一种非接触式方法,可在 20-500°C 的温度范围内和各种气体氛围中探测单晶晶元和多晶晶元样品的电导率和复介电常数。该方法基于微波腔微扰技术,允许在无需将样品与电极接触的情况下同时测量微波电导率、介电常数和多相催化剂的催化性能。该方法对体相性质变化的敏感性通过对离子导体硝酸铷在 20-320°C 温度范围内的特征一阶相变的研究,以及对掺杂五氧化二钒-磷的铌(V)催化剂的复介电常数和电导率的温度依赖性的研究得到了证明,该催化剂用于正丁烷选择性氧化为马来酸酐。同时,通过在线 GC 分析演化的产物气体来探测催化性能,使该技术成为一种真正的原位方法,能够非侵入式地研究电子结构-功能关系。