Suppr超能文献

共价修饰挥发性麻醉药调节位点可激活 TASK-3(KCNK9)串联孔钾通道。

Covalent modification of a volatile anesthetic regulatory site activates TASK-3 (KCNK9) tandem-pore potassium channels.

机构信息

Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.

出版信息

Mol Pharmacol. 2012 Mar;81(3):393-400. doi: 10.1124/mol.111.076281. Epub 2011 Dec 6.

Abstract

TASK-3 (KCNK9) tandem-pore potassium channels provide a volatile anesthetic-activated and Gα(q) protein- and acidic pH-inhibited potassium conductance important in neuronal excitability. Met-159 of TASK-3 is essential for anesthetic activation and may contribute to the TASK-3 anesthetic binding site(s). We hypothesized that covalent occupancy of an anesthetic binding site would irreversibly activate TASK-3. We introduced a cysteine at residue 159 (M159C) and studied the rate and effect of Cys-159 modification by N-ethylmaleimide (NEM), a cysteine-selective alkylating agent. TASK-3 channels were transiently expressed in Fischer rat thyroid cells, and their function was studied in an Ussing chamber. NEM irreversibly activated M159C TASK-3, with minimal effects on wild-type TASK-3. NEM-modified M159C channels were resistant to inhibition by both acidic pH and active Gα(q) protein. M159C channels that were first inhibited by Gα(q) protein were more-slowly activated by NEM, which suggests protection of Cys-159, and similar results were observed with isoflurane activation of wild-type TASK-3. M159W and M159F TASK-3 mutants behaved like NEM-modified M159C channels, with increased basal currents and resistance to inhibition by active Gα(q) protein or acidic pH. TASK-3 wild-type/M159C dimers expressed as a single polypeptide demonstrated that modification of a single Cys-159 was sufficient for TASK-3 activation, and M159F/M159C and M159W/M159C dimers provided evidence for cross-talk between subunits. The data are consistent with residue 159 contributing to an anesthetic regulatory site or sites, and they suggest that volatile anesthetics, through perturbations at a single site, increase TASK-3 channel activity and disrupt its regulation by active Gα(q) protein, a determinant of central nervous system arousal and consciousness.

摘要

任务 3(KCNK9)串联孔钾通道提供了一种挥发性麻醉剂激活和 Gα(q)蛋白和酸性 pH 抑制的钾电导,这对神经元兴奋性很重要。TASK-3 的 Met-159 对于麻醉剂激活是必不可少的,并且可能有助于 TASK-3 麻醉剂结合位点。我们假设麻醉剂结合位点的共价占据会不可逆地激活 TASK-3。我们在残基 159 处引入了一个半胱氨酸(M159C),并研究了 N-乙基马来酰亚胺(NEM)对 Cys-159 的修饰的速率和效果,NEM 是一种半胱氨酸选择性烷化剂。TASK-3 通道在 Fischer 大鼠甲状腺细胞中瞬时表达,并在 Ussing 室中研究其功能。NEM 不可逆地激活了 M159C TASK-3,对野生型 TASK-3 的影响最小。NEM 修饰的 M159C 通道对酸性 pH 和活性 Gα(q)蛋白的抑制均具有抗性。首先被 Gα(q)蛋白抑制的 M159C 通道被 NEM 更缓慢地激活,这表明 Cys-159 受到保护,并且类似的结果也观察到异氟烷激活野生型 TASK-3。M159W 和 M159F TASK-3 突变体的行为类似于 NEM 修饰的 M159C 通道,具有增加的基础电流和对活性 Gα(q)蛋白或酸性 pH 的抑制作用的抗性。作为单一多肽表达的 TASK-3 野生型/M159C 二聚体表明,单个 Cys-159 的修饰足以激活 TASK-3,并且 M159F/M159C 和 M159W/M159C 二聚体为亚基之间的串扰提供了证据。这些数据与残基 159 有助于麻醉剂调节位点或位点一致,并且它们表明挥发性麻醉剂通过单个位点的干扰,增加 TASK-3 通道活性并破坏其活性 Gα(q)蛋白的调节,这是中枢神经系统觉醒和意识的决定因素。

相似文献

1
Covalent modification of a volatile anesthetic regulatory site activates TASK-3 (KCNK9) tandem-pore potassium channels.
Mol Pharmacol. 2012 Mar;81(3):393-400. doi: 10.1124/mol.111.076281. Epub 2011 Dec 6.
4
TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore potassium channel antagonists stimulate breathing in isoflurane-anesthetized rats.
Anesth Analg. 2013 Apr;116(4):810-6. doi: 10.1213/ANE.0b013e318284469d. Epub 2013 Mar 4.
6
7
Differential effects of volatile and intravenous anesthetics on the activity of human TASK-1.
Am J Physiol Cell Physiol. 2007 Oct;293(4):C1319-26. doi: 10.1152/ajpcell.00100.2007. Epub 2007 Aug 15.
8
Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors.
J Physiol. 2007 Jan 15;578(Pt 2):377-85. doi: 10.1113/jphysiol.2006.121582. Epub 2006 Oct 26.
10
Update on tandem pore (2P) domain K+ channels.
Curr Drug Targets. 2003 May;4(4):347-51. doi: 10.2174/1389450033491091.

引用本文的文献

1
The cryo-EM structure and physical basis for anesthetic inhibition of the THIK1 K2P channel.
Proc Natl Acad Sci U S A. 2025 Apr 8;122(14):e2421654122. doi: 10.1073/pnas.2421654122. Epub 2025 Apr 3.
4
Effects of General Anesthetics on Synaptic Transmission and Plasticity.
Curr Neuropharmacol. 2022;20(1):27-54. doi: 10.2174/1570159X19666210803105232.
5
Structural Insights into the Mechanisms and Pharmacology of K Potassium Channels.
J Mol Biol. 2021 Aug 20;433(17):166995. doi: 10.1016/j.jmb.2021.166995. Epub 2021 Apr 20.
6
Development of Non-opioid Analgesics Targeting Two-pore Domain Potassium Channels.
Curr Neuropharmacol. 2022;20(1):16-26. doi: 10.2174/1570159X19666210407152528.
7
Mechanistic insights into volatile anesthetic modulation of K2P channels.
Elife. 2020 Dec 21;9:e59839. doi: 10.7554/eLife.59839.
8
The Effects of General Anesthetics on Synaptic Transmission.
Curr Neuropharmacol. 2020;18(10):936-965. doi: 10.2174/1570159X18666200227125854.
10

本文引用的文献

1
Multiple modalities converge on a common gate to control K2P channel function.
EMBO J. 2011 Jul 15;30(17):3594-606. doi: 10.1038/emboj.2011.230.
2
Probing the regulation of TASK potassium channels by PI4,5P₂ with switchable phosphoinositide phosphatases.
J Physiol. 2011 Jul 1;589(Pt 13):3149-62. doi: 10.1113/jphysiol.2011.208983. Epub 2011 May 3.
3
Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics.
J Neurosci. 2010 Jun 2;30(22):7691-704. doi: 10.1523/JNEUROSCI.1655-10.2010.
4
An unexpected role for TASK-3 potassium channels in network oscillations with implications for sleep mechanisms and anesthetic action.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17546-51. doi: 10.1073/pnas.0907228106. Epub 2009 Sep 24.
6
General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal.
Nat Rev Neurosci. 2008 May;9(5):370-86. doi: 10.1038/nrn2372.
7
An essential role for orexins in emergence from general anesthesia.
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1309-14. doi: 10.1073/pnas.0707146105. Epub 2008 Jan 14.
9
Mechanism of inhibition of TREK-2 (K2P10.1) by the Gq-coupled M3 muscarinic receptor.
Am J Physiol Cell Physiol. 2006 Oct;291(4):C649-56. doi: 10.1152/ajpcell.00047.2006. Epub 2006 May 3.
10
Inhibition of a background potassium channel by Gq protein alpha-subunits.
Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3422-7. doi: 10.1073/pnas.0507710103. Epub 2006 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验