预测体内膝关节载荷的大挑战竞赛。
Grand challenge competition to predict in vivo knee loads.
机构信息
Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, USA.
出版信息
J Orthop Res. 2012 Apr;30(4):503-13. doi: 10.1002/jor.22023. Epub 2011 Dec 12.
Impairment of the human neuromusculoskeletal system can lead to significant mobility limitations and decreased quality of life. Computational models that accurately represent the musculoskeletal systems of individual patients could be used to explore different treatment options and optimize clinical outcome. The most significant barrier to model-based treatment design is validation of model-based estimates of in vivo contact and muscle forces. This paper introduces an annual "Grand Challenge Competition to Predict In Vivo Knee Loads" based on a series of comprehensive publicly available in vivo data sets for evaluating musculoskeletal model predictions of contact and muscle forces in the knee. The data sets come from patients implanted with force-measuring tibial prostheses. Following a historical review of musculoskeletal modeling methods used for estimating knee muscle and contact forces, we describe the first two data sets used for the first two competitions and summarize four subsequent data sets to be used for future competitions. These data sets include tibial contact force, video motion, ground reaction, muscle EMG, muscle strength, static and dynamic imaging, and implant geometry data. Competition participants create musculoskeletal models to predict tibial contact forces without having access to the corresponding in vivo measurements. These blinded predictions provide an unbiased evaluation of the capabilities and limitations of musculoskeletal modeling methods. The paper concludes with a discussion of how these unique data sets can be used by the musculoskeletal modeling research community to improve the estimation of in vivo muscle and contact forces and ultimately to help make musculoskeletal models clinically useful.
人体神经肌肉骨骼系统的损伤可导致显著的活动受限和生活质量下降。能够准确表示个体患者骨骼肌肉系统的计算模型可用于探索不同的治疗方案并优化临床结果。基于模型的治疗设计的最大障碍是验证基于模型的体内接触和肌肉力估计值。本文介绍了一项年度“预测体内膝关节负荷的 Grand Challenge 竞赛”,该竞赛基于一系列综合的、可公开获取的体内数据集,用于评估膝关节骨骼肌肉模型对接触力和肌肉力的预测。这些数据集来自植入力测量胫骨假体的患者。在对用于估计膝关节肌肉和接触力的骨骼肌肉建模方法进行历史回顾之后,我们描述了前两个数据集以及前两个竞赛的使用情况,并总结了随后的四个数据集,将用于未来的竞赛。这些数据集包括胫骨接触力、视频运动、地面反作用力、肌电图、肌肉力量、静态和动态成像以及植入物几何数据。竞赛参与者创建骨骼肌肉模型来预测胫骨接触力,而无需访问相应的体内测量值。这些盲目的预测提供了对骨骼肌肉建模方法的能力和局限性的公正评估。本文最后讨论了骨骼肌肉建模研究界如何使用这些独特的数据集来提高体内肌肉和接触力的估计值,并最终帮助使骨骼肌肉模型在临床上有用。