Division of Electronic Engineering, Chonbuk National University, Jeonbuk, Korea.
Sensors (Basel). 2011;11(5):5383-401. doi: 10.3390/s110505383. Epub 2011 May 18.
Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.
聚类是一种重要的机制,可有效地为移动节点提供信息,并提高路由、带宽分配以及资源管理和共享的处理能力。聚类算法可以基于节点的电池电量、移动性、网络规模、距离、速度和方向等标准。最重要的是,为了实现良好的聚类性能,应尽量减少开销,允许移动节点在不干扰集群成员身份的情况下加入和离开,同时尽可能地保持当前集群结构。本文提出了一种基于模糊相关性的簇头选择算法(FRCA),以解决现有无线移动自组网传感器网络中存在的问题,例如由于移动性和平面结构导致的动态特性中的节点分布以及对簇形成的干扰。所提出的机制使用模糊相关性来选择用于无线移动自组网传感器网络中的聚类的簇头。在 NS-2 模拟器上实现的模拟中,将所提出的 FRCA 与基于聚类的路由协议(CBRP)、基于权重的自适应聚类算法(WACA)和基于场景的移动自组网聚类算法(SCAM)等算法进行了比较。模拟结果表明,所提出的 FRCA 比其他现有机制具有更好的性能。