Suppr超能文献

利用基于地面的半球摄影和星载雷达数据对橄榄树冠层进行特征描述。

Characterizing olive grove canopies by means of ground-based hemispherical photography and spaceborne RADAR data.

机构信息

ETSITGC, Technical University of Madrid, Campus SUR, Ctra. de Valencia, km 7, Madrid 28031, Spain.

出版信息

Sensors (Basel). 2011;11(8):7476-501. doi: 10.3390/s100807476. Epub 2011 Jul 28.

Abstract

One of the main strengths of active microwave remote sensing, in relation to frequency, is its capacity to penetrate vegetation canopies and reach the ground surface, so that information can be drawn about the vegetation and hydrological properties of the soil surface. All this information is gathered in the so called backscattering coefficient (σ(0)). The subject of this research have been olive groves canopies, where which types of canopy biophysical variables can be derived by a specific optical sensor and then integrated into microwave scattering models has been investigated. This has been undertaken by means of hemispherical photographs and gap fraction procedures. Then, variables such as effective and true Leaf Area Indices have been estimated. Then, in order to characterize this kind of vegetation canopy, two models based on Radiative Transfer theory have been applied and analyzed. First, a generalized two layer geometry model made up of homogeneous layers of soil and vegetation has been considered. Then, a modified version of the Xu and Steven Water Cloud Model has been assessed integrating the canopy biophysical variables derived by the suggested optical procedure. The backscattering coefficients at various polarized channels have been acquired from RADARSAT 2 (C-band), with 38.5° incidence angle at the scene center. For the soil simulation, the best results have been reached using a Dubois scattering model and the VV polarized channel (r(2) = 0.88). In turn, when effective LAI (LAI(eff)) has been taken into account, the parameters of the scattering canopy model are better estimated (r(2) = 0.89). Additionally, an inversion procedure of the vegetation microwave model with the adjusted parameters has been undertaken, where the biophysical values of the canopy retrieved by this methodology fit properly with field measured values.

摘要

主动微波遥感的一个主要优势(相对于频率而言)是它能够穿透植被冠层并到达地面,从而可以获取有关植被和土壤表面水文特性的信息。所有这些信息都汇集在所谓的后向散射系数 (σ(0)) 中。本研究的主题是橄榄树林冠,研究了如何通过特定的光学传感器从树冠中提取生物物理变量,并将其集成到微波散射模型中。这是通过半球形照片和空隙分数程序来实现的。然后,估计了有效和真实叶面积指数等变量。然后,为了表征这种植被冠层,应用并分析了基于辐射传输理论的两种模型。首先,考虑了由土壤和植被均匀层组成的广义两层几何模型。然后,评估了一种改进的 Xu 和 Steven 水云模型,该模型集成了通过建议的光学程序得出的冠层生物物理变量。从 RADARSAT 2(C 波段)获取了不同极化通道的后向散射系数,在场景中心的入射角为 38.5°。对于土壤模拟,使用 Dubois 散射模型和 VV 极化通道(r(2) = 0.88)可以获得最佳结果。反过来,当考虑有效 LAI(LAI(eff))时,可以更好地估计散射冠层模型的参数(r(2) = 0.89)。此外,还进行了具有调整参数的植被微波模型的反演过程,通过该方法获得的冠层生物物理值与实地测量值吻合较好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d8/3231709/a38bc59fe7ff/sensors-11-07476f1.jpg

相似文献

1
Characterizing olive grove canopies by means of ground-based hemispherical photography and spaceborne RADAR data.
Sensors (Basel). 2011;11(8):7476-501. doi: 10.3390/s100807476. Epub 2011 Jul 28.
2
Effects of Plant Crown Shape on Microwave Backscattering Coefficients of Vegetation Canopy.
Sensors (Basel). 2021 Nov 21;21(22):7748. doi: 10.3390/s21227748.
3
Soil Moisture Retrival Based on Sentinel-1 Imagery under Sparse Vegetation Coverage.
Sensors (Basel). 2019 Jan 30;19(3):589. doi: 10.3390/s19030589.
5
Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters.
Sensors (Basel). 2017 Nov 14;17(11):2617. doi: 10.3390/s17112617.
6
Application of remote and in situ information to the management of wetlands in Poland.
J Environ Manage. 2009 May;90(7):2261-9. doi: 10.1016/j.jenvman.2008.02.009. Epub 2008 Apr 18.
7
Determining the K coefficient to leaf area index estimations in a tropical dry forest.
Int J Biometeorol. 2018 Jul;62(7):1187-1197. doi: 10.1007/s00484-018-1522-6. Epub 2018 Mar 15.
8
Monitoring canopy recovery in a subtropical forest following a huge ice storm using hemispherical photography.
Environ Monit Assess. 2019 May 8;191(6):355. doi: 10.1007/s10661-019-7500-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验