Department of Computer Science and Engineering, Noorul Islam University, Kumaracoil, TamilNadu, India.
J Med Syst. 2012 Oct;36(5):3223-32. doi: 10.1007/s10916-011-9813-z. Epub 2011 Dec 16.
In this paper, a computerized scheme for automatic detection of cancerous lesion in mammograms is examined. Breast lesions in mammograms are an area with an abnormality or alteration in the breast tissues. Diagnosis of these lesions at the early stage is a very difficult task as the cancerous lesions are embedded in normal breast tissue structures. This paper proposes a supervised machine learning algorithm - Differential Evolution Optimized Wavelet Neural Network (DEOWNN) for detection of tumor masses in mammograms. Differential Evolution (DE) is a population based optimization algorithm based on the principle of natural evolution, which optimizes real parameters and real valued functions. By utilizing the DE algorithm, the parameters of the Wavelet Neural Network (WNN) are optimized. To increase the detection accuracy a feature extraction methodology is used to extract the texture features of the abnormal breast tissues and normal breast tissues prior to classification. Then DEOWNN classifier is applied at the end to determine whether the given input data is normal or abnormal. The performance of the computerized decision support system is evaluated using a mini database from Mammographic Image Analysis Society (MIAS). The detection performance is evaluated using Receiver Operating Characteristic (ROC) curves. The result shows that the proposed algorithm has a sensitivity of 96.9% and specificity of 92.9%.
本文研究了一种用于自动检测乳腺 X 线照片中癌性病变的计算机方案。乳腺 X 线照片中的乳腺病变是指乳腺组织中出现异常或改变的区域。由于癌性病变嵌入在正常的乳腺组织结构中,因此早期诊断这些病变是一项非常困难的任务。本文提出了一种监督机器学习算法——差分进化优化小波神经网络(DEOWNN),用于检测乳腺 X 线照片中的肿瘤肿块。差分进化(DE)是一种基于自然进化原理的基于种群的优化算法,它优化实数参数和实值函数。通过利用 DE 算法,可以优化小波神经网络(WNN)的参数。为了提高检测准确性,在分类之前,使用特征提取方法提取异常乳腺组织和正常乳腺组织的纹理特征。然后,在最后应用 DEOWNN 分类器来确定给定的输入数据是正常还是异常。使用来自乳腺图像分析学会(MIAS)的小型数据库来评估计算机决策支持系统的性能。使用接收器工作特征(ROC)曲线评估检测性能。结果表明,该算法的灵敏度为 96.9%,特异性为 92.9%。