Bandyopadhyay Nirmalya, Ranka Sanjay, Kahveci Tamer
CISE Department, University of Florida, Gainesville, FL 32611, USA.
Pac Symp Biocomput. 2012:7-18.
Two genes in an organism have a Synthetic Sickness Lethality (SSL) interaction, if their joint deletion leads to a lower than expected fitness. Synthetic Gene Array (SGA) is a technique that helps in identifying SSL values for pairs of genes in a given set of genes. SSL interactions are useful to discover the co-expressed gene groups in the regulatory and signaling networks. Also, they are used to unravel the pair of pathways (subset of physically interacting genes) that substitute the functions of each other. Generating an SGA entry is costly as it requires producing and monitoring a double mutant (a progeny with two mutated genes). Generating a comprehensive SGA can be very expensive as the number of gene pairs is quadratic in the number of genes of the corresponding organism. In this paper, we develop a new method SSLPred to predict the SSL interactions in an organism. Our method is built on the concept of Between Pathway Models (BPM), where majority of the SSL pairs span across the two functionally complementing pathways. We develop a regression based approach that learns the mapping between the gene expressions of single deletion mutant to the corresponding SGA entries. We compare our method to the one by Hescott et al. for predicting the GI (Genetic Interaction) score of Saccharomyces cerevisiae (S. cerevisiae) on four benchmark datasets. On different experimental setups, on average SSLPred performs significantly better compared to the other method.
如果一个生物体中的两个基因存在合成病致死(SSL)相互作用,那么它们的联合缺失会导致适应性低于预期。合成基因阵列(SGA)是一种有助于确定给定基因集中基因对的SSL值的技术。SSL相互作用对于发现调控和信号网络中的共表达基因组很有用。此外,它们还用于揭示相互替代功能的一对途径(物理相互作用基因的子集)。生成一个SGA条目成本很高,因为它需要产生和监测一个双突变体(具有两个突变基因的后代)。生成一个全面的SGA可能非常昂贵,因为基因对的数量与相应生物体的基因数量呈二次方关系。在本文中,我们开发了一种新方法SSLPred来预测生物体中的SSL相互作用。我们的方法基于途径间模型(BPM)的概念构建,其中大多数SSL对跨越两个功能互补的途径。我们开发了一种基于回归的方法,该方法学习单缺失突变体的基因表达与相应SGA条目的映射关系。我们将我们的方法与Hescott等人的方法进行比较,以在四个基准数据集上预测酿酒酵母(S. cerevisiae)的遗传相互作用(GI)分数。在不同的实验设置下,平均而言,SSLPred的表现明显优于其他方法。