Suppr超能文献

加拉帕戈斯地雀内共生的象鼻虫的遗传结构与历史的比较研究。

Comparative genetic structure and demographic history in endemic galapagos weevils.

机构信息

Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.

出版信息

J Hered. 2012 Mar-Apr;103(2):206-20. doi: 10.1093/jhered/esr124. Epub 2011 Dec 15.

Abstract

The challenge of maintaining genetic diversity within populations can be exacerbated for island endemics if they display population dynamics and behavioral attributes that expose them to genetic drift without the benefits of gene flow. We assess patterns of the genetic structure and demographic history in 27 populations of 9 species of flightless endemic Galápagos weevils from 9 of the islands and 1 winged introduced close relative. Analysis of mitochondrial DNA reveals a significant population structure and moderately variable, though demographically stable, populations for lowland endemics (F(ST) = 0.094-0.541; π: 0.014-0.042; Mismatch P = 0.003-0.026; and D((Tajima)) = -0.601 to 1.203), in contrast to signals of past contractions and expansions in highland specialists on 2 islands (Mismatch P = 0.003-0.026 and D((Tajima)) = -0.601 to 1.203). We interpret this series of variable and highly structured population groups as a system of long-established, independently founded island units, where structuring could be a signal of microallopatric differentiation due to patchy host plant distribution and poor dispersal abilities. We suggest that the severe reduction and subsequent increase of a suitably moist habitat that accompanied past climatic variation could have contributed to the observed population fluctuations in highland specialists. We propose the future exploration of hybridization between the introduced and highland endemic species on Santa Cruz, especially given the expansion of the introduced species into the highlands, the sensitivity to past climatic variation detected in highland populations, and the potentially threatened state of single-island endemics.

摘要

如果岛屿特有种表现出使其易受遗传漂变影响而无基因流益处的种群动态和行为特征,那么在种群内维持遗传多样性的挑战可能会加剧。我们评估了来自 9 个岛屿的 9 种不会飞的特有加拉帕戈斯象鼻虫的 27 个种群的遗传结构和种群历史模式,以及 1 种有翼的引入近缘种。线粒体 DNA 分析揭示了显著的种群结构和适度变异的种群,尽管在低地特有种中种群较为稳定(F(ST) = 0.094-0.541;π:0.014-0.042;Mismatch P = 0.003-0.026;和 D((Tajima)) = -0.601 至 1.203),而在 2 个岛屿上的高地特有种则存在过去收缩和扩张的信号(Mismatch P = 0.003-0.026 和 D((Tajima)) = -0.601 至 1.203)。我们将这一系列具有可变和高度结构的种群群体解释为一个长期存在的、独立建立的岛屿单位系统,其中结构可能是由于宿主植物分布不均和扩散能力差而导致的微地理分化的信号。我们认为,过去气候变异性导致的适宜湿润生境的严重减少和随后的增加,可能导致高地特有种观察到的种群波动。我们建议未来在圣克鲁斯岛探索引入种与高地特有种之间的杂交,特别是考虑到引入种向高地的扩张、在高地种群中检测到的对过去气候变异性的敏感性,以及单一岛屿特有种可能受到威胁的状况。

相似文献

1
Comparative genetic structure and demographic history in endemic galapagos weevils.
J Hered. 2012 Mar-Apr;103(2):206-20. doi: 10.1093/jhered/esr124. Epub 2011 Dec 15.
3
Colonization history, ecological shifts and diversification in the evolution of endemic Galápagos weevils.
Mol Ecol. 2008 Feb;17(4):1089-107. doi: 10.1111/j.1365-294X.2007.03642.x.
4
Genetic status and timing of a weevil introduction to Santa Cruz Island, Galapagos.
J Hered. 2014 May-Jun;105(3):365-80. doi: 10.1093/jhered/est096. Epub 2014 Jan 7.
7
Psidium guajava in the Galapagos Islands: Population genetics and history of an invasive species.
PLoS One. 2019 Mar 13;14(3):e0203737. doi: 10.1371/journal.pone.0203737. eCollection 2019.
8
Phylogeography of a habitat specialist with high dispersal capability: the Savi's Warbler Locustella luscinioides.
PLoS One. 2012;7(6):e38497. doi: 10.1371/journal.pone.0038497. Epub 2012 Jun 11.
9
Seasonal effects and fine-scale population dynamics of Aedes taeniorhynchus, a major disease vector in the Galapagos Islands.
Mol Ecol. 2010 Oct;19(20):4491-504. doi: 10.1111/j.1365-294X.2010.04843.x. Epub 2010 Sep 28.
10
Pleistocene refugia in an arid landscape: analysis of a widely distributed Australian passerine.
Mol Ecol. 2007 Jun;16(12):2525-41. doi: 10.1111/j.1365-294X.2007.03289.x.

本文引用的文献

2
ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE.
Evolution. 1984 Nov;38(6):1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x.
3
Coevolution between native and invasive plant competitors: implications for invasive species management.
Evol Appl. 2010 Mar;3(2):169-78. doi: 10.1111/j.1752-4571.2009.00105.x.
5
Population genetic structure of Aldabra giant tortoises.
J Hered. 2011 Jan-Feb;102(1):29-37. doi: 10.1093/jhered/esq096. Epub 2010 Aug 30.
6
Parallel habitat specialization within the wolf spider genus Hogna from the Galápagos.
Mol Ecol. 2010 Sep;19(18):4029-45. doi: 10.1111/j.1365-294X.2010.04758.x.
7
Ecological opportunity in adaptive radiation of Galápagos endemic land snails.
Am Nat. 2009 Dec;174(6):898-905. doi: 10.1086/646604.
8
Genetic structure within and between island populations of the flightless cormorant (Phalacrocorax harrisi).
Mol Ecol. 2009 May;18(10):2103-11. doi: 10.1111/j.1365-294X.2009.04179.x.
9
Coalescent genealogy samplers: windows into population history.
Trends Ecol Evol. 2009 Feb;24(2):86-93. doi: 10.1016/j.tree.2008.09.007. Epub 2008 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验