Suppr超能文献

CrossQuery:一个用于转录组数据关联查询的网络工具。

CrossQuery: a web tool for easy associative querying of transcriptome data.

机构信息

Physiological Chemistry I, Biocenter, University of Würzburg, Würzburg, Germany.

出版信息

PLoS One. 2011;6(12):e28990. doi: 10.1371/journal.pone.0028990. Epub 2011 Dec 12.

Abstract

Enormous amounts of data are being generated by modern methods such as transcriptome or exome sequencing and microarray profiling. Primary analyses such as quality control, normalization, statistics and mapping are highly complex and need to be performed by specialists. Thereafter, results are handed back to biomedical researchers, who are then confronted with complicated data lists. For rather simple tasks like data filtering, sorting and cross-association there is a need for new tools which can be used by non-specialists. Here, we describe CrossQuery, a web tool that enables straight forward, simple syntax queries to be executed on transcriptome sequencing and microarray datasets. We provide deep-sequencing data sets of stem cell lines derived from the model fish Medaka and microarray data of human endothelial cells. In the example datasets provided, mRNA expression levels, gene, transcript and sample identification numbers, GO-terms and gene descriptions can be freely correlated, filtered and sorted. Queries can be saved for later reuse and results can be exported to standard formats that allow copy-and-paste to all widespread data visualization tools such as Microsoft Excel. CrossQuery enables researchers to quickly and freely work with transcriptome and microarray data sets requiring only minimal computer skills. Furthermore, CrossQuery allows growing association of multiple datasets as long as at least one common point of correlated information, such as transcript identification numbers or GO-terms, is shared between samples. For advanced users, the object-oriented plug-in and event-driven code design of both server-side and client-side scripts allow easy addition of new features, data sources and data types.

摘要

大量数据由现代方法产生,如转录组或外显子测序和微阵列分析。主要分析如质量控制、标准化、统计和映射非常复杂,需要由专家进行。之后,结果会交还给生物医学研究人员,然后他们会面对复杂的数据列表。对于数据过滤、排序和交叉关联等相对简单的任务,需要新的工具,这些工具可以由非专家使用。在这里,我们描述了 CrossQuery,这是一个网络工具,它可以对转录组测序和微阵列数据集执行简单的、简单的语法查询。我们提供了源自模型鱼类斑马鱼的干细胞系的深度测序数据集和人类内皮细胞的微阵列数据。在所提供的示例数据集中,可以自由关联、过滤和排序 mRNA 表达水平、基因、转录本和样本识别号、GO 术语和基因描述。查询可以保存以备后用,结果可以导出到标准格式,允许复制和粘贴到所有广泛使用的数据可视化工具,如 Microsoft Excel。CrossQuery 使研究人员能够快速、自由地使用转录组和微阵列数据集,只需要最低限度的计算机技能。此外,只要样本之间至少共享一个相关信息的共同点,如转录本识别号或 GO 术语,CrossQuery 就允许多个数据集的关联不断增加。对于高级用户,服务器端和客户端脚本的面向对象插件和事件驱动代码设计允许轻松添加新功能、数据源和数据类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2662/3236239/c63c8d789a34/pone.0028990.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验