Suppr超能文献

气单胞菌对纳米银颗粒(SNPs)从水溶液中的吸附去除及其吸附等温线和动力学。

Adsorptive removal of silver nanoparticles (SNPs) from aqueous solution by Aeromonas punctata and its adsorption isotherm and kinetics.

机构信息

Centre for Nano Biotechnology, VIT University, Vellore, India.

出版信息

Colloids Surf B Biointerfaces. 2012 Apr 1;92:156-60. doi: 10.1016/j.colsurfb.2011.11.032. Epub 2011 Nov 25.

Abstract

Silver nanoparticles (SNPs) are being increasingly used in many consumer products and industrial application. The release of SNPs to the environment is a major concern. Here we have studied the adsorptive removal of SNPs by a SNP resistant bacterial species Aeromonas punctata, isolated from the sewage environment. The influence of zeta potential on adsorption was investigated at acidic, neutral and alkaline pH and with varying salt (NaCl) concentrations. The rate of adsorption and removal of SNPs was decreases with increase in pH and salt concentration. The zeta potential study suggests that, the adsorption of SNPs on the cell surface was related to electrostatic force of attraction. The equilibrium adsorption isotherm and kinetics of adsorption were also studied. The adsorption equilibrium isotherms fitted well to the Langmuir model. The kinetics of adsorption fitted best to pseudo-first-order. A. punctata was able to remove 4.42 and 3.85 mg/L of SNPs at pH 5 and 7 respectively. The present study can be used for the effective removal of SNPs which is released into the environment and sewage treatment systems.

摘要

银纳米粒子(SNPs)越来越多地被应用于许多消费产品和工业应用中。SNPs 向环境中的释放是一个主要关注点。在这里,我们研究了一种从污水环境中分离出来的耐银纳米粒子的细菌 Aeromonas punctata 对 SNPs 的吸附去除。在酸性、中性和碱性 pH 值以及不同盐(NaCl)浓度下,研究了zeta 电位对吸附的影响。随着 pH 值和盐浓度的增加,SNPs 的吸附和去除速率降低。zeta 电位研究表明,SNPs 在细胞表面的吸附与静电力的吸引力有关。还研究了吸附平衡等温线和吸附动力学。吸附平衡等温线很好地符合朗缪尔模型。吸附动力学最符合拟一级动力学。在 pH 值为 5 和 7 时,A. punctata 分别能够去除 4.42 和 3.85 mg/L 的 SNPs。本研究可用于有效去除释放到环境和污水处理系统中的 SNPs。

相似文献

1
Adsorptive removal of silver nanoparticles (SNPs) from aqueous solution by Aeromonas punctata and its adsorption isotherm and kinetics.
Colloids Surf B Biointerfaces. 2012 Apr 1;92:156-60. doi: 10.1016/j.colsurfb.2011.11.032. Epub 2011 Nov 25.
2
Studies on interaction of colloidal silver nanoparticles (SNPs) with five different bacterial species.
Colloids Surf B Biointerfaces. 2011 Oct 1;87(1):129-38. doi: 10.1016/j.colsurfb.2011.05.012. Epub 2011 May 12.
3
Interaction of silver nanoparticles (SNPs) with bacterial extracellular proteins (ECPs) and its adsorption isotherms and kinetics.
J Hazard Mater. 2011 Aug 15;192(1):299-306. doi: 10.1016/j.jhazmat.2011.05.024. Epub 2011 Jun 1.
4
Bacterial tolerance to silver nanoparticles (SNPs): aeromonas punctata isolated from sewage environment.
J Basic Microbiol. 2011 Apr;51(2):183-90. doi: 10.1002/jobm.201000067. Epub 2010 Nov 12.
5
Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent--Kinetics and isotherm analysis.
J Hazard Mater. 2006 Nov 2;138(1):116-24. doi: 10.1016/j.jhazmat.2006.05.045. Epub 2006 May 22.
6
Enhanced removal of trace Cr(VI) ions from aqueous solution by titanium oxide-Ag composite adsorbents.
J Hazard Mater. 2011 Jun 15;190(1-3):723-8. doi: 10.1016/j.jhazmat.2011.03.114. Epub 2011 Apr 8.
7
A comparison of the properties of natural clinoptilolites and their ion-exchange capacities for silver removal.
J Hazard Mater. 2010 Aug 15;180(1-3):486-92. doi: 10.1016/j.jhazmat.2010.04.056. Epub 2010 Apr 21.
8
Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass.
J Hazard Mater. 2010 Sep 15;181(1-3):271-80. doi: 10.1016/j.jhazmat.2010.05.008. Epub 2010 May 7.
9
Metal ion removal from aqueous solution using physic seed hull.
J Hazard Mater. 2010 Jul 15;179(1-3):363-72. doi: 10.1016/j.jhazmat.2010.03.014. Epub 2010 Mar 10.
10
Impact of exopolysaccharides on the stability of silver nanoparticles in water.
Water Res. 2011 Oct 15;45(16):5184-90. doi: 10.1016/j.watres.2011.07.024. Epub 2011 Jul 23.

引用本文的文献

1
Thermodynamic and Kinetic Binding Behaviors of Human Serum Albumin to Silver Nanoparticles.
Materials (Basel). 2022 Jul 16;15(14):4957. doi: 10.3390/ma15144957.
4
Extremophiles as sources of inorganic bio-nanoparticles.
World J Microbiol Biotechnol. 2016 Sep;32(9):156. doi: 10.1007/s11274-016-2111-7. Epub 2016 Jul 27.
5
Effects of pH and natural organic matter (NOM) on the adsorptive removal of CuO nanoparticles by periphyton.
Environ Sci Pollut Res Int. 2015 May;22(10):7696-704. doi: 10.1007/s11356-014-3952-y. Epub 2014 Dec 17.
6
Removal of silver nanoparticles using live and heat shock Aspergillus niger cultures.
World J Microbiol Biotechnol. 2014 Jun;30(6):1747-54. doi: 10.1007/s11274-014-1597-0. Epub 2014 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验