Suppr超能文献

通过正电子发射断层扫描术,对[11C]R05013853 作为一种新型甘氨酸转运蛋白 1 显像剂的临床前特征进行研究。

Pre-clinical characterization of [11C]R05013853 as a novel radiotracer for imaging of the glycine transporter type 1 by positron emission tomography.

机构信息

Neuroscience Department, Pharmaceutical Division, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland.

The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-0807, USA.

出版信息

Neuroimage. 2013 Jul 15;75:291-300. doi: 10.1016/j.neuroimage.2011.11.090. Epub 2011 Dec 10.

Abstract

A specific positron emission tomography (PET) radiotracer for the glycine transporter type 1 (GlyT1) would constitute an imaging biomarker to investigate the distribution of GlyT1 in normal individuals and those with neuropsychiatric disorders. In addition it could demonstrate the ability of a novel drug to reach its target in the brain and enable receptor occupancy studies, thus facilitating drug development. In this article we describe the evaluation in non-human primates of two candidate PET radiotracers ([(11)C]RO5013852 and [(11)C]RO5013853) previously characterized in the rat. Both radiotracers showed acceptable uptake in the baboon brain and heterogeneous distribution consistent with that reported for GlyT1. In vivo blockade studies with two specific glycine reuptake inhibitors (GRIs), RO5013853 and bitopertin (RG1678, reduced uptake of both tracers to homogenous levels across brain regions and demonstrated specificity of the signal. [(11)C]RO5013853 showed a larger specific signal and slightly higher brain uptake and was therefore selected for further characterization. Quantitative compartmental analysis of PET data showed that the 2-tissue compartment model with 5 parameters was the most appropriate to describe the kinetics of [(11)C]RO5013853. Two additional methods were used: a) the Logan graphical analysis using plasma input and, b) a linear parametric imaging approach with the 2-tissue compartmental model. These produced VT estimates of comparable magnitude, namely, pons, thalamus and cerebellum>caudate, putamen and cortical regions. High resolution autoradiography with tritiated RO5013853 was used to confirm the binding pattern observed by PET. In vivo metabolism studies in the baboon demonstrated the formation of a single, radiolabeled metabolite more polar than the parent compound. Finally, [(11)C]RO5013853 was used to quantify the degree of cerebral GlyT1 occupancy observed in the baboon following oral administration of bitopertin, a selective GRI presently in Phase III clinical trial. Plasma concentrations of approximately 150-300 ng/mL were estimated to produce 50% GlyT1 occupancy in the thalamus, the cerebellum and the pons. [(11)C]RO5013853 is a promising radiotracer for in vivo imaging of the GlyT1. It can be easily radiolabeled, exhibits moderate metabolism, displays a good specific signal, and is suitable for receptor occupancy studies of therapeutic compounds that target the GlyT1. The successful characterization of [(11)C]RO5013853 in healthy volunteers is presented in this NeuroImage issue (Wong et al., 2013).

摘要

一种特定的正电子发射断层扫描(PET)放射性示踪剂用于甘氨酸转运蛋白 1(GlyT1),将成为一种成像生物标志物,用于研究正常个体和神经精神疾病患者中 GlyT1 的分布。此外,它还可以证明新型药物到达大脑目标的能力,并能够进行受体占有率研究,从而促进药物开发。在本文中,我们描述了以前在大鼠中表征的两种候选 PET 放射性示踪剂([(11)C]RO5013852 和 [(11)C]RO5013853)在非人类灵长类动物中的评估。两种放射性示踪剂在狒狒大脑中均显示出可接受的摄取,并且分布不均匀,与先前报道的 GlyT1 一致。使用两种特异性甘氨酸再摄取抑制剂(GRIs)RO5013853 和 bitopertin(RG1678)进行的体内阻断研究,降低了两种示踪剂在大脑区域的均匀摄取水平,并证明了信号的特异性。[(11)C]RO5013853 显示出更大的特异性信号和稍高的脑摄取,因此被选择用于进一步表征。PET 数据的定量房室分析表明,具有 5 个参数的 2 组织房室模型最适合描述 [(11)C]RO5013853 的动力学。还使用了两种附加方法:a)使用血浆输入的 Logan 图形分析,以及 b)使用 2 组织房室模型的线性参数成像方法。这些方法产生了类似大小的 VT 估计值,即脑桥、丘脑和小脑>尾状核、壳核和皮质区。使用氚标记的 RO5013853 进行高分辨率放射自显影,以确认 PET 观察到的结合模式。在狒狒体内代谢研究中,证明了形成一种比母体化合物更极性的单一放射性标记代谢产物。最后,[(11)C]RO5013853 用于量化在口服给予选择性 GlyT1 再摄取抑制剂 bitopertin 后在狒狒中观察到的脑 GlyT1 占有率。估计血浆浓度约为 150-300ng/mL 可使丘脑、小脑和脑桥中的 GlyT1 占有率达到 50%。[(11)C]RO5013853 是一种有前途的 GlyT1 体内成像放射性示踪剂。它可以很容易地进行放射性标记,表现出适度的代谢,显示出良好的特异性信号,并且适合于针对 GlyT1 的治疗性化合物的受体占有率研究。在本期《神经影像学》(NeuroImage)中介绍了 [(11)C]RO5013853 在健康志愿者中的成功特征(Wong 等人,2013 年)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验