Pérez-Ángel Gabriel, Nahmad-Molinari Yuri
Departamento de Física Aplicada, CINVESTAV del IPN, Apartado Postal 73 Cordemex, 97310 Mérida, Yucatán, México.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041303. doi: 10.1103/PhysRevE.84.041303. Epub 2011 Oct 11.
We study the formation of crystalline clusters for a two-dimensional (2D) sinusoidally vibrated granular gas, with maximum vertical acceleration smaller than gravity, using fully 3D simulations. It is found that this phenomenon arises from the spontaneous segregation of the granulate into two dynamical modes: one of grains that bounce in synchrony with the motion of the sustaining plate ("bouncers") and another of grains that cease to bounce and simply rolls on the plate, without ever loosing contact with it ("rollers"). These two dynamical categories are quite robust with respect to perturbations. The populations for bouncers and rollers depend on the preparation of the granulate and can be made to take arbitrary values in all the range of accelerations where both dynamical modes are present. It is found that the dynamical mode with the largest population coalesces in clusters under the influence of the other mode, whose grains act as a higher pressure gas that compresses the clusters. In this way it is possible to produce clusters of rollers or clusters of bouncers. A gas made of grains from only one dynamical class shows only weak density fluctuations. When the occupation fractions for both modes are similar, one observes segregation and clusters of both types. The clustering of the gas is monitored using both the average coordination number and the local hexatic order parameter ψ(6). Energy flows in the plane are monitored, and it is shown that roller-bouncer collisions increase horizontal kinetic energy, while all other types of collisions reduce this energy. We find that friction with the substrate is the main sink of horizontal energy for these granular gases.
我们使用全三维模拟研究了二维正弦振动颗粒气体中晶体团簇的形成,该气体的最大垂直加速度小于重力加速度。研究发现,这种现象源于颗粒自发地分离为两种动力学模式:一种是与支撑板运动同步弹跳的颗粒(“弹跳者”),另一种是停止弹跳并仅在板上滚动且始终不与板失去接触的颗粒(“滚动者”)。这两种动力学类别对于扰动相当稳健。弹跳者和滚动者的数量取决于颗粒的初始状态,并且在两种动力学模式都存在的所有加速度范围内可以取任意值。研究发现,数量最多的动力学模式在另一种模式的影响下聚集成团簇,另一种模式的颗粒充当压缩团簇的高压气体。通过这种方式,可以产生滚动者团簇或弹跳者团簇。仅由一种动力学类别的颗粒组成的气体仅表现出微弱的密度波动。当两种模式的占据分数相似时,可以观察到两种类型的分离和团簇。使用平均配位数和局部六重有序参数ψ(6)来监测气体的团簇情况。监测平面内的能量流动,结果表明滚动者 - 弹跳者碰撞增加水平动能,而所有其他类型的碰撞则降低该能量。我们发现与基板的摩擦是这些颗粒气体水平能量的主要消耗源。