van der Poel Erwin P, Stevens Richard J A M, Lohse Detlef
Physics of Fluids Group, Department of Science and Technology, Mesa+ Institute, University of Twente, 7500 AE Enschede, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):045303. doi: 10.1103/PhysRevE.84.045303. Epub 2011 Oct 19.
The aspect ratio (Γ) dependence of the heat transfer (Nusselt number Nu in dimensionless form) in turbulent (two-dimensional) Rayleigh-Bénard convection is numerically studied in the regime 0.4≤Γ≤1.25 for Rayleigh numbers 10(7)≤Ra≤Ra(9) and Prandtl numbers Pr=0.7 (gas) and 4.3 (water). Nu(Γ) shows a very rich structure with sudden jumps and sharp transitions. We connect these structures to the way the flow organizes itself in the sample and explain why the aspect ratio dependence of Nu is more pronounced for small Pr. Even for fixed Γ different turbulent states (with different resulting Nu) can exist, between which the flow can or cannot switch. In the latter case the heat transfer thus depends on the initial conditions.
在瑞利数(10^7\leq Ra\leq Ra^9)以及普朗特数(Pr = 0.7)(气体)和(Pr = 4.3)(水)的条件下,对处于(0.4\leq\Gamma\leq1.25)范围内的湍流(二维)瑞利 - 贝纳德对流中传热(以无量纲形式表示的努塞尔数(Nu))的纵横比((\Gamma))依赖性进行了数值研究。(Nu(\Gamma))呈现出具有突然跳跃和急剧转变的非常丰富的结构。我们将这些结构与样本中流动的自我组织方式联系起来,并解释了为什么对于小普朗特数,(Nu)的纵横比依赖性更为明显。即使对于固定的(\Gamma),也可能存在不同的湍流状态(具有不同的(Nu)结果),流动在这些状态之间可以或不可以切换。在后一种情况下,传热因此取决于初始条件。