Huang Haibo, Krafczyk Manfred, Lu Xiyun
Institute for Computational Modeling in Civil Engineering, Technische Universität, D-38106 Braunschweig, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):046710. doi: 10.1103/PhysRevE.84.046710. Epub 2011 Oct 25.
Numerous schemes have been proposed to incorporate a bulk forcing term into the lattice Boltzmann equation. In this paper we present a simple and straightforward comparative analysis of five popular schemes [Shan and Chen, Phys. Rev. E 47, 1815 (1993); Phys Rev Lett. 81, 1618 (1998); He et al., Phys. Rev. E 57, R13 (1998); Guo et al., Phys. Rev. E 65, 046308 (2002); Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)] in which their differences and similarities are identified. From the analysis we classify the schemes into two groups; the behaviors of the schemes in each group are proven to be identical up to second order. Numerical test simulating the two-dimensional unsteady Taylor-Green vortex flow problem demonstrate that all five schemes are of comparable accuracy for single-phase flow. However, for two-phase flow the situation is different, which is demonstrated by incorporating these schemes into different Shan-Chen-type multiphase models. The forcing scheme in the original Shan-Chen (SC) multiphase model turns out to be inaccurate in terms of the resulting surface tension for different density ratios and relaxation times. In the numerical tests, a typical equation of state and interparticle interactions including next-nearest neighbors were incorporated into the SC model. Our results confirm that the surface-tension values obtained from the original SC lattice Boltzmann method (LBM) simulation depend on the value of the relaxation time τ. For τ<0.7Δt, the surface tension agree well with the analytical solutions. However, when τ>0.7Δt, the surface tension turns out to be systematically larger than the analytical one, exceeding it by more than a factor of 2 for τ=2Δt. In contrast, with the application of the scheme proposed by He et al., the SC LBM produces very accurate surface tensions independent of the value of τ. We also found that the densities of the coexisting liquid and gas can be adjusted to match those at thermodynamic equilibrium if the particle interaction term includes next-nearest-neighbor contributions. The obtained results will be useful for further studies of two-phase flow with high density ratios using the SC LBM approach.
已经提出了许多方案将体积力项纳入格子玻尔兹曼方程。在本文中,我们对五种流行的方案[单和陈,《物理评论E》47,1815(1993);《物理评论快报》81,1618(1998);何等人,《物理评论E》57,R13(1998);郭等人,《物理评论E》65,046308(2002);库佩什托克等人,《计算数学及其应用》58,965(2009)]进行了简单直接的比较分析,识别了它们的异同。通过分析,我们将这些方案分为两组;证明每组方案的行为在二阶以内是相同的。模拟二维非定常泰勒 - 格林涡旋流动问题的数值测试表明,对于单相流,所有五种方案的精度相当。然而,对于两相流,情况有所不同,这通过将这些方案纳入不同的单 - 陈型多相模型得到证明。原来的单 - 陈(SC)多相模型中的力方案对于不同的密度比和松弛时间,在产生的表面张力方面被证明是不准确的。在数值测试中,一个典型的状态方程和包括次近邻的粒子间相互作用被纳入SC模型。我们的结果证实,从原始SC格子玻尔兹曼方法(LBM)模拟获得的表面张力值取决于松弛时间τ的值。对于τ < 0.7Δt,表面张力与解析解吻合良好。然而,当τ > 0.7Δt时,表面张力系统地大于解析值,对于τ = 2Δt,超过解析值两倍多。相比之下,应用何等人提出的方案,SC LBM产生的表面张力非常准确,与τ的值无关。我们还发现,如果粒子相互作用项包括次近邻贡献,则共存液体和气体的密度可以调整以匹配热力学平衡时的密度。所获得的结果将有助于使用SC LBM方法对高密度比两相流进行进一步研究。