Pardo L C, Rovira-Esteva M, Busch S, Moulin J-F, Tamarit J Ll
Grup de Caracterització de Materials, Departament de Física i Enginyieria Nuclear, ETSEIB, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Catalonia, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 2):046711. doi: 10.1103/PhysRevE.84.046711. Epub 2011 Oct 25.
Fitting a data set with a parametrized model can be seen geometrically as finding the global minimum of the χ(2) hypersurface, depending on a set of parameters {P(i)}. This is usually done using the Levenberg-Marquardt algorithm. The main drawback of this algorithm is that despite its fast convergence, it can get stuck if the parameters are not initialized close to the final solution. We propose a modification of the Metropolis algorithm introducing a parameter step tuning that optimizes the sampling of parameter space. The ability of the parameter tuning algorithm together with simulated annealing to find the global χ(2) hypersurface minimum, jumping across χ(2){P(i)} barriers when necessary, is demonstrated with synthetic functions and with real data.
用参数化模型拟合数据集,从几何角度看,就是找到取决于一组参数{P(i)}的χ(2)超曲面的全局最小值。这通常使用Levenberg-Marquardt算法来完成。该算法的主要缺点是,尽管收敛速度快,但如果参数的初始化与最终解不接近,就可能陷入困境。我们提出了一种对Metropolis算法的改进,引入了参数步长调整,以优化参数空间的采样。通过合成函数和实际数据证明了参数调整算法与模拟退火相结合,在必要时跨越χ(2){P(i)}障碍找到全局χ(2)超曲面最小值的能力。