Suppr超能文献

将二级特征纳入用于预测蛋白质结构类别的周氏伪氨基酸组成的一般形式中。

Incorporating secondary features into the general form of Chou's PseAAC for predicting protein structural class.

作者信息

Liao Bo, Xiang Qilin, Li Dachao

机构信息

College of Information science and Engineering, Hunan University, Changsha, Hunan, China.

出版信息

Protein Pept Lett. 2012 Nov;19(11):1133-8. doi: 10.2174/092986612803217051.

Abstract

Protein structure information is very useful for the confirmation of protein function. The protein structural class can provide information for protein 3D structure analysis, causing the conformation of the protein overall folding type plays a significant part in molecular biology. In this paper, we focus on the prediction of protein structural class which was based on new feature representation. We extract features from the Chou-Fasman parameter, amino acid compositions, amino acids hydrophobicity features, polarity information and pair-coupled amino acid composition. The prediction result by the Support vector machine (SVM) classifier shows that our method is better than some others.

摘要

蛋白质结构信息对于确定蛋白质功能非常有用。蛋白质结构类别可为蛋白质三维结构分析提供信息,这使得蛋白质整体折叠类型的构象在分子生物学中起着重要作用。在本文中,我们专注于基于新特征表示的蛋白质结构类别的预测。我们从周氏-法斯曼参数、氨基酸组成、氨基酸疏水性特征、极性信息和配对耦合氨基酸组成中提取特征。支持向量机(SVM)分类器的预测结果表明,我们的方法比其他一些方法更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验