Liao Bo, Xiang Qilin, Li Dachao
College of Information science and Engineering, Hunan University, Changsha, Hunan, China.
Protein Pept Lett. 2012 Nov;19(11):1133-8. doi: 10.2174/092986612803217051.
Protein structure information is very useful for the confirmation of protein function. The protein structural class can provide information for protein 3D structure analysis, causing the conformation of the protein overall folding type plays a significant part in molecular biology. In this paper, we focus on the prediction of protein structural class which was based on new feature representation. We extract features from the Chou-Fasman parameter, amino acid compositions, amino acids hydrophobicity features, polarity information and pair-coupled amino acid composition. The prediction result by the Support vector machine (SVM) classifier shows that our method is better than some others.
蛋白质结构信息对于确定蛋白质功能非常有用。蛋白质结构类别可为蛋白质三维结构分析提供信息,这使得蛋白质整体折叠类型的构象在分子生物学中起着重要作用。在本文中,我们专注于基于新特征表示的蛋白质结构类别的预测。我们从周氏-法斯曼参数、氨基酸组成、氨基酸疏水性特征、极性信息和配对耦合氨基酸组成中提取特征。支持向量机(SVM)分类器的预测结果表明,我们的方法比其他一些方法更好。