Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular y Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Universidad de Valladolid, Spain.
Am J Physiol Cell Physiol. 2012 Apr 15;302(8):C1128-40. doi: 10.1152/ajpcell.00196.2011. Epub 2011 Dec 21.
The participation of the carotid body (CB) in glucose homeostasis and evidence obtained in simplified cultured CB slices or dissociated cells have led to the proposal that CB chemoreceptor cells are glucoreceptors. However, data generated in intact, freshly excised organs deny CB chemoreceptor cells' glucosensing properties. The physiological significance of the contention has prompted the present study, performed in a newly developed preparation of the intact CB organ in culture that maintains chemoreceptor cells' microenvironment. Chemoreceptor cells of intact CBs in culture retained their capacity to store, synthesize, and secrete catecholamine in response to hypoxia for at least 6 days. Aglycemia did not elicit neurosecretion in dissociated chemoreceptor cells or in intact CB in culture, but potentiated hypoxia-elicited neurosecretion, exclusively, in 1-day-old intact CB cultures and dissociated chemoreceptor cells cultured for 24 h. In fura 2-loaded cells, aglycemia (but not 1 mM) caused a slow Ca(2+)-dependent and nifedipine-insensitive increase in fluorescence at 340- to 380-nm wavelength emission ratio and augmented the fluorescent signal elicited by hypoxia. Association of nifedipine and KBR7943 (a Na(+)/Ca(2+) exchanger inhibitor) completely abolished the aglycemic Ca(2+) response. We conclude that chemoreceptor cells are not sensitive to hypoglycemia. We hypothesize that cultured chemoreceptor cells become transiently more dependent on glycolysis. Consequently, aglycemia would partially inhibit the Na(+)/K(+) pump, causing an increase in intracellular Na(+) concentration, and a reversal of Na(+)/Ca(2+) exchanger. This would slowly increase intracellular Ca(2+) concentration and cause the potentiation of the hypoxic responses. We discuss the nature of the signals detected by chemoreceptor cells for the CB to achieve its glycemic homeostatic role.
颈动脉体(CB)参与葡萄糖稳态,简化培养的 CB 切片或分离细胞中获得的证据表明,CB 化学感受器细胞是葡萄糖感受器。然而,在完整的、新提取的器官中获得的数据否定了 CB 化学感受器细胞的葡萄糖感应特性。这一争议的生理意义促使我们进行了本研究,该研究在一种新开发的完整 CB 器官培养物中进行,该培养物维持着化学感受器细胞的微环境。培养的完整 CB 化学感受器细胞在缺氧条件下至少能够保持 6 天储存、合成和分泌儿茶酚胺的能力。在分离的化学感受器细胞或培养的完整 CB 中,低血糖不会引发神经分泌,但在 1 天龄的完整 CB 培养物和培养 24 小时的分离化学感受器细胞中,低血糖会增强缺氧引发的神经分泌。在加载 fura 2 的细胞中,低血糖(而非 1mM)会引起 340-380nm 波长发射比的缓慢 Ca(2+)-依赖性和硝苯地平不敏感的荧光增加,并增强缺氧引起的荧光信号。硝苯地平和 KBR7943(一种 Na(+)/Ca(2+)交换抑制剂)的联合使用完全消除了低血糖引起的 Ca(2+)反应。我们得出结论,化学感受器细胞对低血糖不敏感。我们假设培养的化学感受器细胞变得暂时对糖酵解更依赖。因此,低血糖会部分抑制 Na(+)/K(+)泵,导致细胞内 Na(+)浓度增加,以及 Na(+)/Ca(2+)交换的逆转。这会缓慢增加细胞内 Ca(2+)浓度,并导致缺氧反应的增强。我们讨论了化学感受器细胞检测到的信号的性质,以便 CB 实现其血糖稳态作用。