Saint Louis University Center for Outcomes Research, St. Louis, MO 63104, USA.
Transplantation. 2012 Jan 27;93(2):172-81. doi: 10.1097/TP.0b013e31823ec02a.
Innovation in renal transplant management would benefit from identification of early markers that accurately predict long-term graft survival.
Data from the United States Renal Data System for kidney transplant recipients (1995-2004) were analyzed to develop prediction models for all-cause graft survival based on estimated glomerular filtration rate (eGFR), the presence or absence of acute rejection within 1 year, and recipient and donor demographic characteristics. The prediction models were applied to participants in the Belatacept Evaluation of Nephroprotection and Efficacy as First-line Immunosuppression Trial and Belatacept Evaluation of Nephroprotection and Efficacy as First-line Immunosuppression Trial--EXTended criteria donors trials comparing belatacept with cyclosporine in standard criteria donor (SCD) and expanded criteria donor (ECD) graft recipients, respectively, as an external validation of the model predictions in a diverse population.
Compared with eGFR 60 mL/min/1.73 m(2), the relative hazard for all-cause graft loss increased in an accelerating pattern with lower GFR to approximately eight and seven times, respectively, among SCD and ECD recipients with eGFR less than 15 mL/min/1.73 m(2). When applied to the clinical trial samples, the predicted differences in all-cause graft survival of less intensive belatacept versus cyclosporine at the second transplant anniversary (SCD: 3.9%, 95% confidence interval [CI]: 3.6% to 4.2%; ECD: 4.1%, 95% CI: 3.5% to 4.7%) were similar to observed differences (SCD: 4.2%, 97.3% CI: -1.3% to 10.1%; ECD: 1.4%, 97.3% CI: -7.5% to 10.2%).
Accurate models of long-term graft survival can be developed using eGFR, donor, and recipient characteristics. Long-term survival prediction models may provide an efficient method for assessing the impact of novel pharmaceutical agents and clinical management protocols.
创新的肾移植管理将受益于识别准确预测长期移植物存活率的早期标志物。
分析美国肾脏数据系统(1995-2004 年)中肾移植受者的数据,根据估算肾小球滤过率(eGFR)、1 年内是否存在急性排斥反应以及受者和供者的人口统计学特征,建立全因移植物存活率预测模型。将预测模型应用于贝那普利评价肾保护和作为一线免疫抑制试验和贝那普利评价肾保护和作为一线免疫抑制试验-扩展标准供体试验的参与者中,比较贝那普利与环孢素在标准供体(SCD)和扩展标准供体(ECD)移植物受者中的疗效,作为模型预测在不同人群中的外部验证。
与 eGFR 60 mL/min/1.73 m(2)相比,SCD 和 ECD 受者 eGFR 小于 15 mL/min/1.73 m(2)时,全因移植物丢失的相对危险呈加速模式增加,分别约为 8 倍和 7 倍。当应用于临床试验样本时,第二个移植周年时贝那普利与环孢素相比,全因移植物存活率的预测差异(SCD:3.9%,95%置信区间[CI]:3.6%至 4.2%;ECD:4.1%,95%CI:3.5%至 4.7%)与观察到的差异相似(SCD:4.2%,97.3%CI:-1.3%至 10.1%;ECD:1.4%,97.3%CI:-7.5%至 10.2%)。
可以使用 eGFR、供体和受者特征来开发准确的长期移植物存活率模型。长期生存预测模型可能为评估新型药物制剂和临床管理方案的影响提供一种有效的方法。