Suppr超能文献

一种用于结肠病变的诊断专家系统。

A diagnostic expert system for colonic lesions.

作者信息

Graham A R, Paplanus S H, Bartels P H

机构信息

Department of Pathology, University of Arizona Health Sciences Center, Tucson 85724.

出版信息

Am J Clin Pathol. 1990 Oct;94(4 Suppl 1):S15-8.

PMID:2220680
Abstract

The diagnostic expert system for colonic lesions (DESCL) was designed to discriminate colonic adenoma and adenocarcinoma from normal colonic tissue. Although it was originally developed for use in conjunction with a machine vision analytic system, the DESCL has evolved into a teaching tool and a model for conceptual machine learning. The expert system is table driven and consists of a shell and a knowledge base. The latter comprises a series of architectural and cytologic observations and a quantitative estimate of diagnostic importance relating these observations to diagnostic outcome. In a validation study of 100 colonic lesions, the expert system achieved a success rate of 98%. It has the flexibility to allow individual pathologists to "customize" the knowledge base to suit their diagnostic criteria.

摘要

结肠病变诊断专家系统(DESCL)旨在从正常结肠组织中鉴别出结肠腺瘤和腺癌。尽管它最初是为与机器视觉分析系统结合使用而开发的,但DESCL已发展成为一种教学工具和概念性机器学习模型。该专家系统由表格驱动,由一个外壳和一个知识库组成。知识库包含一系列结构和细胞学观察结果,以及将这些观察结果与诊断结果相关联的诊断重要性的定量估计。在一项对100个结肠病变的验证研究中,该专家系统的成功率达到了98%。它具有灵活性,允许个体病理学家根据自己的诊断标准“定制”知识库。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验