Harms Brian D, Kearns Jeffrey D, Su Stephen V, Kohli Neeraj, Nielsen Ulrik B, Schoeberl Birgit
Merrimack Pharmaceuticals, Cambridge, Massachusetts, USA.
Methods Enzymol. 2012;502:67-87. doi: 10.1016/B978-0-12-416039-2.00004-5.
Monoclonal antibodies are valuable as anticancer therapeutics because of their ability to selectively bind tumor-associated target proteins like receptor tyrosine kinases. Kinetic computational models that capture protein-protein interactions using mass action kinetics are a valuable tool for understanding the binding properties of monoclonal antibodies to their targets. Insights from the models can be used to explore different formats, to set antibody design specifications such as affinity and valence, and to predict potency. Antibody binding to target is driven by both intrinsic monovalent affinity and bivalent avidity. In this chapter, we describe a combined experimental and computational method of assessing the relative importance of these effects on observed drug potency. The method, which we call virtual flow cytometry (VFC), merges experimental measurements of monovalent antibody binding kinetics and affinity curves of antibody-antigen binding into a kinetic computational model of antibody-antigen interaction. The VFC method introduces a parameter χ, the avidity factor, which characterizes the ability of an antibody to cross-link its target through bivalent binding. This simple parameterization of antibody cross-linking allows the model to successfully describe and predict antibody binding curves across a wide variety of experimental conditions, including variations in target expression level and incubation time of antibody with target. We further demonstrate how computational models of antibody binding to cells can be used to predict target inhibition potency. Importantly, we demonstrate computationally that antibodies with high ability to cross-link antigen have significant potency advantages. We also present data suggesting that the parameter χ is a physical, epitope-dependent property of an antibody, and as a result propose that determination of antibody cross-linking and avidity should be incorporated into the screening of antibody panels for therapeutic development. Overall, our results suggest that antibody cross-linking, in addition to monovalent binding affinity, is a key design parameter of antibody performance.
单克隆抗体作为抗癌治疗药物很有价值,因为它们能够选择性地结合肿瘤相关靶蛋白,如受体酪氨酸激酶。使用质量作用动力学来捕捉蛋白质-蛋白质相互作用的动力学计算模型,是理解单克隆抗体与其靶标结合特性的宝贵工具。模型得出的见解可用于探索不同的形式,设定抗体设计规格,如亲和力和价态,并预测效力。抗体与靶标的结合由内在的单价亲和力和二价亲合力共同驱动。在本章中,我们描述了一种结合实验和计算的方法,用于评估这些效应对观察到的药物效力的相对重要性。我们将这种方法称为虚拟流式细胞术(VFC),它将单价抗体结合动力学的实验测量和抗体-抗原结合的亲和力曲线合并到一个抗体-抗原相互作用的动力学计算模型中。VFC方法引入了一个参数χ,即亲合力因子,它表征了抗体通过二价结合交联其靶标的能力。这种对抗体交联的简单参数化使得该模型能够成功地描述和预测在各种实验条件下的抗体结合曲线,包括靶标表达水平的变化以及抗体与靶标的孵育时间。我们进一步展示了抗体与细胞结合的计算模型如何用于预测靶标抑制效力。重要的是,我们通过计算证明,具有高交联抗原能力的抗体具有显著的效力优势。我们还提供数据表明,参数χ是抗体的一种物理的、依赖表位的特性,因此建议在治疗性开发的抗体筛选中纳入抗体交联和亲合力的测定。总体而言,我们的结果表明,除了单价结合亲和力外,抗体交联也是抗体性能的一个关键设计参数。