Graham Brett H
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
Methods Mol Biol. 2012;837:35-46. doi: 10.1007/978-1-61779-504-6_3.
Mitochondrial disorders causing respiratory chain dysfunction comprise a group of genetically and clinically heterogeneous diseases. This heterogeneity reflects both the biochemical complexity of oxidative phosphorylation and the genetic contribution of both the nuclear and mitochondrial genomes to the respiratory chain. Current approaches to diagnose and classify mitochondrial disorders incorporate clinical, biochemical, and histological criteria, as well as DNA-based molecular diagnostic testing. While the identification of pathogenic mutations is generally accepted as definitive, the large number of candidate nuclear genes, the involvement of two genomes, and potential heteroplasmy of pathogenic mitochondrial DNA (mtDNA) frequently complicate successful molecular diagnostic confirmation. The strategy for pursuing a diagnosis derives from the integration of family history, clinical findings, biochemical evaluations, histopathological analyses, neuroradiological results, and the availability of different tissues for analyses. Screening for common point mutations and large deletions in mtDNA is usually the first step. Specific subsets of known nuclear disease genes can be screened by direct sequencing for cases of recognizable patterns of respiratory chain deficiencies or clinically identifiable syndromic presentations. Measurement of mtDNA content in affected tissues such as muscle and liver allows screening for mtDNA depletion syndromes. The growing list of known disease-causing genes and the promise of next generation sequencing technologies will undoubtedly improve diagnostic accuracy and genetic counseling for this challenging group of disorders.
导致呼吸链功能障碍的线粒体疾病包括一组遗传和临床异质性疾病。这种异质性既反映了氧化磷酸化的生化复杂性,也反映了核基因组和线粒体基因组对呼吸链的遗传贡献。目前诊断和分类线粒体疾病的方法包括临床、生化和组织学标准,以及基于DNA的分子诊断检测。虽然致病性突变的鉴定通常被认为是确定的,但大量候选核基因、两个基因组的参与以及致病性线粒体DNA(mtDNA)的潜在异质性常常使成功的分子诊断确认变得复杂。寻求诊断的策略源于家族史、临床发现、生化评估、组织病理学分析、神经放射学结果以及不同组织用于分析的可用性的整合。筛查mtDNA中的常见点突变和大片段缺失通常是第一步。对于具有可识别的呼吸链缺陷模式或临床可识别的综合征表现的病例,可以通过直接测序筛查已知核疾病基因的特定子集。测量受影响组织(如肌肉和肝脏)中的mtDNA含量可以筛查mtDNA耗竭综合征。已知致病基因的不断增加以及下一代测序技术的前景无疑将提高对这一具有挑战性的疾病组的诊断准确性和遗传咨询水平。