Institut de Recherche en Astrophysique et Planétologie, Observatoire Midi-Pyrénées, C.N.R.S., 14 Avenue Edouard Belin, Toulouse, France.
J Acoust Soc Am. 2011 Dec;130(6):3674-90. doi: 10.1121/1.3652856.
This paper investigates the reconstruction of elastic Green's function from the cross-correlation of waves excited by random noise in the context of scattering theory. Using a general operator equation-the resolvent formula-Green's function reconstruction is established when the noise sources satisfy an equipartition condition. In an inhomogeneous medium, the operator formalism leads to generalized forms of optical theorem involving the off-shell T-matrix of elastic waves, which describes scattering in the near-field. The role of temporal absorption in the formulation of the theorem is discussed. Previously established symmetry and reciprocity relations involving the on-shell T-matrix are recovered in the usual far-field and infinitesimal absorption limits. The theory is applied to a point scattering model for elastic waves. The T-matrix of the point scatterer incorporating all recurrent scattering loops is obtained by a regularization procedure. The physical significance of the point scatterer is discussed. In particular this model satisfies the off-shell version of the generalized optical theorem. The link between equipartition and Green's function reconstruction in a scattering medium is discussed.
本文研究了在散射理论背景下,通过随机噪声激励的波的互相关来重建弹性格林函数。利用一般的算子方程——本征值公式,当噪声源满足等分配条件时,建立了格林函数的重建。在非均匀介质中,算子形式导致了涉及弹性波离壳 T 矩阵的广义光学定理形式,该定理描述了近场中的散射。讨论了在定理表述中时间吸收的作用。在通常的远场和无穷小吸收极限中,恢复了涉及本征值 T 矩阵的先前建立的对称性和互易性关系。该理论应用于弹性波的点散射模型。通过正则化过程获得了包含所有递归散射环的点散射体的 T 矩阵。讨论了点散射体的物理意义。特别是,该模型满足广义光学定理的离壳版本。还讨论了散射介质中均匀分配和格林函数重建之间的联系。