Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018, China.
Phys Chem Chem Phys. 2012 Feb 14;14(6):1923-33. doi: 10.1039/c2cp22720g. Epub 2012 Jan 9.
Transition metal atom M (M = Cu, Ag, Au) adsorption on CeO(2)(110), a technologically important catalytic support surface, is investigated with density-functional theory within the DFT+U formalism. A set of model configurations was generated by placing M at three surface sites, viz., on top of an O, an O bridge site, and a Ce bridge site. Prior to DFT optimization, small distortions in selected Ce-O distances were imposed to explore the energetics associated with reduction of Ce(4+) to Ce(3+) due to charge transfer to Ce during M adsorption. Charge redistribution is confirmed with spin density isosurfaces and site projected density of states. We demonstrate that Cu and Au atoms can be oxidized to Cu(2+) and Au(2+), although the adsorption energy, E(ads), of Au(2+) is less favorable and, unlike Cu(2+), it has not been experimentally observed. Oxidation of Ag always results in Ag(+). For M adsorption at an O bridge site, E(ads)(2NN) > E(ads)(3NN) > E(ads)(1NN) where NN denotes the nearest neighbor Ce(3+) site relative to M. Alternatively, for M adsorption at a Ce bridge site, E(ads)(3NN) > E(ads)(2NN) > E(ads)(1NN). The adsorption behavior of M on CeO(2) (110) is compared with M adsorption on CeO(2)(111).
过渡金属原子 M(M=Cu、Ag、Au)在 CeO(2)(110)上的吸附,CeO(2)(110)是一种具有重要技术意义的催化支撑表面,利用密度泛函理论和 DFT+U 形式体系对其进行了研究。通过将 M 放置在三个表面位置(即 O 原子的顶部、O 桥位和 Ce 桥位),生成了一组模型构型。在进行 DFT 优化之前,对选定的 Ce-O 距离进行了微小的扭曲,以探索由于 M 吸附时电荷向 Ce 的转移而导致 Ce(4+)还原为 Ce(3+)的相关能量。通过自旋密度等位面和站点投影态密度来确认电荷再分配。我们证明 Cu 和 Au 原子可以被氧化为 Cu(2+)和 Au(2+),尽管 Au(2+)的吸附能 E(ads)不太有利,而且与 Cu(2+)不同,它尚未在实验中观察到。Ag 的氧化总是导致 Ag(+)。对于 M 在 O 桥位上的吸附,E(ads)(2NN)>E(ads)(3NN)>E(ads)(1NN),其中 NN 表示相对于 M 的最近邻 Ce(3+)位。或者,对于 M 在 Ce 桥位上的吸附,E(ads)(3NN)>E(ads)(2NN)>E(ads)(1NN)。M 在 CeO(2)(110)上的吸附行为与 M 在 CeO(2)(111)上的吸附行为进行了比较。