Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1257-62. doi: 10.1073/pnas.1109958109. Epub 2012 Jan 9.
To measure molecular changes underlying pathogen adaptation, we generated a searchable dataset of more than 12,000 mass spectrometry events, corresponding to lipids and small molecules that constitute a lipidome for Mycobacterium tuberculosis. Iron is essential for M. tuberculosis survival, and the organism imports this metal using mycobactin and carboxymycobactin siderophores. Detection of an unexpected siderophore variant and deletions of genes for iron scavenging has led to a revised mycobactin biosynthesis model. An organism-wide search of the M. tuberculosis database for hypothetical compounds predicted by this model led to the discovery of two families of previously unknown lipids, designated monodeoxymycobactins and monodeoxycarboxymycobactins. These molecules suggest a revised biosynthetic model that alters the substrates and order of action of enzymes through the mycobactin biosynthetic pathway. We tested this model genetically by solving M. tuberculosis lipidomes after deletion of the iron-dependent regulator (ideR), mycobactin synthase B (mbtB), or mycobactin synthase G (mbtG). These studies show that deoxymycobactins are actively regulated during iron starvation, and also define essential roles of MbtG in converting deoxymycobactins to mycobactin and in promoting M. tuberculosis growth. Thus, lipidomics is an efficient discovery tool that informs genetic relationships, leading to a revised general model for the biosynthesis of these virulence-conferring siderophores.
为了衡量病原体适应的分子变化,我们生成了一个可搜索的数据集,其中包含超过 12000 个质谱事件,这些事件对应于构成结核分枝杆菌脂质组的脂质和小分子。铁是结核分枝杆菌生存所必需的,该生物体使用分枝菌酸和羧基分枝菌酸 siderophores 来导入这种金属。检测到一种意想不到的 siderophore 变体和铁摄取基因的缺失,导致了分枝菌酸生物合成模型的修订。通过对该模型预测的假设化合物在结核分枝杆菌数据库中的全基因组搜索,发现了两种以前未知的脂质家族,分别命名为单脱氧分枝菌酸和单脱氧羧基分枝菌酸。这些分子表明了一个修订后的生物合成模型,该模型通过分枝菌酸生物合成途径改变了酶的底物和作用顺序。我们通过删除铁依赖性调节因子(ideR)、分枝菌酸合酶 B(mbtB)或分枝菌酸合酶 G(mbtG)后解决结核分枝杆菌脂质组来验证该模型。这些研究表明,在缺铁胁迫下,脱氧分枝菌酸是被主动调控的,并且还定义了 MbtG 在将脱氧分枝菌酸转化为分枝菌酸以及促进结核分枝杆菌生长方面的重要作用。因此,脂质组学是一种有效的发现工具,可以提供遗传关系的信息,从而为这些赋予毒力的 siderophores 的生物合成提出了一个修订后的通用模型。