Suppr超能文献

含有融合细胞色素 b 亚基的分离细胞色素 bc₁样复合物的酶活性,其电子传递链的不对称失活片段。

Enzymatic activities of isolated cytochrome bc₁-like complexes containing fused cytochrome b subunits with asymmetrically inactivated segments of electron transfer chains.

机构信息

Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.

出版信息

Biochemistry. 2012 Jan 31;51(4):829-35. doi: 10.1021/bi2016316. Epub 2012 Jan 17.

Abstract

Homodimeric structure of cytochrome bc₁, a common component of biological energy conversion systems, builds in four catalytic quinone oxidation/reduction sites and four chains of cofactors (branches) that, connected by a centrally located bridge, form a symmetric H-shaped electron transfer system. The mechanism of operation of this complex system is under constant debate. Here, we report on isolation and enzymatic examination of cytochrome bc₁-like complexes containing fused cytochrome b subunits in which asymmetrically introduced mutations inactivated individual branches in various combinations. The structural asymmetry of those forms was confirmed spectroscopically. All the asymmetric forms corresponding to cytochrome bc₁ with partial or full inactivation of one monomer retain high enzymatic activity but at the same time show a decrease in the maximum turnover rate by a factor close to 2. This strongly supports the model assuming independent operation of monomers. The cross-inactivated form corresponding to cytochrome bc₁ with disabled complementary parts of each monomer retains the enzymatic activity at the level that, for the first time on isolated from membranes and purified to homogeneity preparations, demonstrates that intermonomer electron transfer through the bridge effectively sustains the enzymatic turnover. The results fully support the concept that electrons freely distribute between the four catalytic sites of a dimer and that any path connecting the catalytic sites on the opposite sides of the membrane is enzymatically competent. The possibility to examine enzymatic properties of isolated forms of asymmetric complexes constructed using the cytochrome b fusion system extends the array of tools available for investigating the engineering of dimeric cytochrome bc₁ from the mechanistic and physiological perspectives.

摘要

细胞色素 bc₁的同源二聚体结构是生物能量转换系统的常见组成部分,它构建了四个催化醌氧化/还原位点和四个辅因子链(分支),这些分支通过中央桥连接,形成对称的 H 形电子传递系统。这个复杂系统的工作机制一直存在争议。在这里,我们报告了含有融合细胞色素 b 亚基的细胞色素 bc₁样复合物的分离和酶学研究,其中在不对称引入的突变中,以各种组合失活了单个分支。这些形式的结构不对称性通过光谱学得到了证实。所有对应于细胞色素 bc₁的不对称形式,其单体的一部分或全部失活,保留了高酶活性,但同时最大周转率降低了接近 2 的因子。这强烈支持了单体独立运作的模型。对应于每个单体互补部分失活的细胞色素 bc₁的交叉失活形式保留了酶活性,这在从膜中分离并纯化为均质制剂的首次实验中证明,桥接处的单体间电子转移有效地维持了酶的周转率。结果完全支持了这样的概念,即电子在二聚体的四个催化位点之间自由分配,并且任何连接膜两侧催化位点的路径在酶学上都是有效的。使用细胞色素 b 融合系统构建不对称复合物的分离形式的酶学性质的研究扩展了用于从机制和生理角度研究二聚体细胞色素 bc₁工程的工具组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8865/3269193/d2242035706c/bi-2011-016316_0001.jpg

相似文献

2
An electronic bus bar lies in the core of cytochrome bc1.
Science. 2010 Jul 23;329(5990):451-4. doi: 10.1126/science.1190899.
4
Hybrid fusions show that inter-monomer electron transfer robustly supports cytochrome bc1 function in vivo.
Biochem Biophys Res Commun. 2014 Aug 22;451(2):270-5. doi: 10.1016/j.bbrc.2014.07.117. Epub 2014 Aug 1.
6
Intermonomer electron transfer between the b hemes of heterodimeric cytochrome bc(1).
Biochemistry. 2013 Oct 15;52(41):7196-206. doi: 10.1021/bi400561e. Epub 2013 Oct 1.
8
Intermonomer electron transfer between the low-potential b hemes of cytochrome bc₁.
Biochemistry. 2011 Mar 15;50(10):1651-63. doi: 10.1021/bi101736v. Epub 2011 Feb 15.
9
Electron sweep across four b-hemes of cytochrome bc revealed by unusual paramagnetic properties of the Q semiquinone intermediate.
Biochim Biophys Acta Bioenerg. 2018 Jun;1859(6):459-469. doi: 10.1016/j.bbabio.2018.03.010. Epub 2018 Mar 27.

引用本文的文献

1
Long-range charge transfer mechanism of the IIIIV mycobacterial supercomplex.
Nat Commun. 2024 Jun 20;15(1):5276. doi: 10.1038/s41467-024-49628-9.
2
Low-cost stopped-flow and freeze-quench device for double mixing.
HardwareX. 2023 Mar 1;14:e00409. doi: 10.1016/j.ohx.2023.e00409. eCollection 2023 Jun.
4
Catalytic Reactions and Energy Conservation in the Cytochrome and Complexes of Energy-Transducing Membranes.
Chem Rev. 2021 Feb 24;121(4):2020-2108. doi: 10.1021/acs.chemrev.0c00712. Epub 2021 Jan 19.
5
pH and Potential Transients of the bc Complex Co-Reconstituted in Proteo-Lipobeads with the Reaction Center from Rb. sphaeroides.
J Phys Chem B. 2017 Jan 12;121(1):143-152. doi: 10.1021/acs.jpcb.6b11116. Epub 2017 Jan 4.
7
Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.
J Biol Chem. 2016 Mar 25;291(13):6872-81. doi: 10.1074/jbc.M115.712307. Epub 2016 Feb 8.
10
Hybrid fusions show that inter-monomer electron transfer robustly supports cytochrome bc1 function in vivo.
Biochem Biophys Res Commun. 2014 Aug 22;451(2):270-5. doi: 10.1016/j.bbrc.2014.07.117. Epub 2014 Aug 1.

本文引用的文献

2
Photosynthetic growth despite a broken Q-cycle.
Nat Commun. 2011;2:301. doi: 10.1038/ncomms1299.
3
The Q cycle of cytochrome bc complexes: a structure perspective.
Biochim Biophys Acta. 2011 Jul;1807(7):788-802. doi: 10.1016/j.bbabio.2011.02.006. Epub 2011 Feb 23.
4
Intermonomer electron transfer between the low-potential b hemes of cytochrome bc₁.
Biochemistry. 2011 Mar 15;50(10):1651-63. doi: 10.1021/bi101736v. Epub 2011 Feb 15.
5
An electronic bus bar lies in the core of cytochrome bc1.
Science. 2010 Jul 23;329(5990):451-4. doi: 10.1126/science.1190899.
10
Across membrane communication between the Q(o) and Q(i) active sites of cytochrome bc(1).
Biochemistry. 2009 Mar 10;48(9):1888-99. doi: 10.1021/bi802216h.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验