Suppr超能文献

小鼠和人类策略鉴定 PTPN14 为血管生成和遗传性出血性毛细血管扩张症的修饰因子。

Mouse and human strategies identify PTPN14 as a modifier of angiogenesis and hereditary haemorrhagic telangiectasia.

机构信息

UCSF Helen Diller Family Comprehensive Cancer Center (HDFCCC), San Francisco, California 94158-9001, USA.

出版信息

Nat Commun. 2012 Jan 10;3:616. doi: 10.1038/ncomms1633.

Abstract

Hereditary haemorrhagic telangiectasia (HHT) [corrected] is a vascular dysplasia syndrome caused by mutations in transforming growth factor-β/bone morphogenetic protein pathway genes, ENG and ACVRL1. HHT [corrected] shows considerable variation in clinical manifestations, suggesting environmental and/or genetic modifier effects. Strain-specific penetrance of the vascular phenotypes of Eng(+/-) and Tgfb1(-/-) mice provides further support for genetic modification of transforming growth factor-β pathway deficits. We previously identified variant genomic loci, including Tgfbm2, which suppress prenatal vascular lethality of Tgfb1(-/-) mice. Here we show that human polymorphic variants of PTPN14 within the orthologous TGFBM2 locus influence clinical severity of HHT, [corrected] as assessed by development of pulmonary arteriovenous malformation. We also show that PTPN14, ACVRL1 and EFNB2, encoding EphrinB2, show interdependent expression in primary arterial endothelial cells in vitro. This suggests an involvement of PTPN14 in angiogenesis and/or arteriovenous fate, acting via EphrinB2 and ACVRL1/activin receptor-like kinase 1. These findings contribute to a deeper understanding of the molecular pathology of HHT [corrected] in particular and to angiogenesis in general.

摘要

遗传性出血性毛细血管扩张症(HHT)[已更正]是一种血管发育不良综合征,由转化生长因子-β/骨形态发生蛋白途径基因 ENG 和 ACVRL1 的突变引起。HHT [已更正]在临床表现上存在很大差异,提示存在环境和/或遗传修饰效应。Eng(+/-)和 Tgfb1(-/-)小鼠血管表型的菌株特异性外显率进一步支持转化生长因子-β途径缺陷的遗传修饰。我们之前确定了变体基因组位置,包括 Tgfbm2,它可以抑制 Tgfb1(-/-)小鼠的产前血管致死性。在这里,我们显示 TGFBM2 基因座内的人类多态性 PTPN14 变体影响 HHT 的临床严重程度,[已更正]通过肺动静脉畸形的发展来评估。我们还表明,编码 EphrinB2 的 PTPN14、ACVRL1 和 EFNB2 在体外原代动脉内皮细胞中表现出相互依赖的表达。这表明 PTPN14 参与血管生成和/或动静脉命运,通过 EphrinB2 和 ACVRL1/激活素受体样激酶 1 发挥作用。这些发现有助于更深入地了解 HHT [已更正]的分子病理学,特别是血管生成的分子病理学。

相似文献

6
Interaction Between ALK1 Signaling and Connexin40 in the Development of Arteriovenous Malformations.
Arterioscler Thromb Vasc Biol. 2016 Apr;36(4):707-17. doi: 10.1161/ATVBAHA.115.306719. Epub 2016 Jan 28.
8
Mutational and clinical spectrum of Japanese patients with hereditary hemorrhagic telangiectasia.
BMC Med Genomics. 2021 Dec 6;14(1):288. doi: 10.1186/s12920-021-01139-y.
10

引用本文的文献

2
Executive summary of the 14th HHT international scientific conference.
Angiogenesis. 2023 Aug;26(Suppl 1):27-37. doi: 10.1007/s10456-023-09886-5. Epub 2023 Sep 11.
4
MmuPV1 E7's interaction with PTPN14 delays Epithelial differentiation and contributes to virus-induced skin disease.
PLoS Pathog. 2023 Apr 10;19(4):e1011215. doi: 10.1371/journal.ppat.1011215. eCollection 2023 Apr.
5
Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty?
Front Cell Dev Biol. 2023 Jan 23;10:1051311. doi: 10.3389/fcell.2022.1051311. eCollection 2022.
6
Endothelial Rbpj deletion normalizes Notch4-induced brain arteriovenous malformation in mice.
J Exp Med. 2023 Feb 6;220(2). doi: 10.1084/jem.20211390. Epub 2022 Nov 28.
7
Diffuse Cerebral Edema and Impending Herniation Complicating Hepatic Encephalopathy in Hereditary Hemorrhagic Telangiectasia.
Case Rep Med. 2022 Feb 18;2022:2612544. doi: 10.1155/2022/2612544. eCollection 2022.
9
Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia.
J Clin Med. 2020 Nov 5;9(11):3571. doi: 10.3390/jcm9113571.

本文引用的文献

1
VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling.
Nat Cell Biol. 2011 Sep 11;13(10):1202-13. doi: 10.1038/ncb2331.
3
Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment.
Blood Rev. 2010 Nov;24(6):203-19. doi: 10.1016/j.blre.2010.07.001. Epub 2010 Sep 25.
4
Protein tyrosine phosphatase PTPN14 is a regulator of lymphatic function and choanal development in humans.
Am J Hum Genet. 2010 Sep 10;87(3):436-44. doi: 10.1016/j.ajhg.2010.08.008.
5
Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis.
Nature. 2010 May 27;465(7297):487-91. doi: 10.1038/nature08995. Epub 2010 May 5.
6
Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis.
Nature. 2010 May 27;465(7297):483-6. doi: 10.1038/nature09002.
8
Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome.
Am J Med Genet A. 2010 Feb;152A(2):333-9. doi: 10.1002/ajmg.a.33206.
9
ALK5 phosphorylation of the endoglin cytoplasmic domain regulates Smad1/5/8 signaling and endothelial cell migration.
Carcinogenesis. 2010 Mar;31(3):435-41. doi: 10.1093/carcin/bgp327. Epub 2009 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验