Suppr超能文献

高压冷冻技术揭示海马苔藓纤维突触的结构可塑性。

Structural plasticity of hippocampal mossy fiber synapses as revealed by high-pressure freezing.

机构信息

Department for Structural Neurobiology, Center for Molecular Neurobiology Hamburg-ZMNH, University of Hamburg, D-20246 Hamburg, Germany.

出版信息

J Comp Neurol. 2012 Aug 1;520(11):2340-51. doi: 10.1002/cne.23040.

Abstract

Despite recent progress in fluorescence microscopy techniques, electron microscopy (EM) is still superior in the simultaneous analysis of all tissue components at high resolution. However, it is unclear to what extent conventional fixation for EM using aldehydes results in tissue alteration. Here we made an attempt to minimize tissue alteration by using rapid high-pressure freezing (HPF) of hippocampal slice cultures. We used this approach to monitor fine-structural changes at hippocampal mossy fiber synapses associated with chemically induced long-term potentiation (LTP). Synaptic plasticity in LTP has been known to involve structural changes at synapses including reorganization of the actin cytoskeleton and de novo formation of spines. While LTP-induced formation and growth of postsynaptic spines have been reported, little is known about associated structural changes in presynaptic boutons. Mossy fiber synapses are assumed to exhibit presynaptic LTP expression and are easily identified by EM. In slice cultures from wildtype mice, we found that chemical LTP increased the length of the presynaptic membrane of mossy fiber boutons, associated with a de novo formation of small spines and an increase in the number of active zones. Of note, these changes were not observed in slice cultures from Munc13-1 knockout mutants exhibiting defective vesicle priming. These findings show that activation of hippocampal mossy fibers induces pre- and postsynaptic structural changes at mossy fiber synapses that can be monitored by EM.

摘要

尽管荧光显微镜技术最近取得了进展,但电子显微镜(EM)在高分辨率下同时分析所有组织成分方面仍然更具优势。然而,醛类常规固定用于 EM 会在多大程度上导致组织改变尚不清楚。在这里,我们尝试通过快速高压冷冻(HPF)海马切片培养物来最小化组织改变。我们使用这种方法来监测与化学诱导的长时程增强(LTP)相关的海马苔藓纤维突触的精细结构变化。已知 LTP 中的突触可塑性涉及包括肌动蛋白细胞骨架重组和新形成的棘突在内的突触的结构变化。虽然已经报道了 LTP 诱导的突触后棘突的形成和生长,但与突触前末梢相关的结构变化知之甚少。苔藓纤维突触被认为表现出突触前 LTP 表达,并且可以通过 EM 轻松识别。在来自野生型小鼠的切片培养物中,我们发现化学 LTP 增加了苔藓纤维末梢的突触前膜的长度,与小棘突的新形成和活性区数量的增加有关。值得注意的是,在表现出囊泡引发缺陷的 Munc13-1 敲除突变体的切片培养物中未观察到这些变化。这些发现表明,激活海马苔藓纤维会诱导苔藓纤维突触的前突触和后突触结构变化,这些变化可以通过 EM 监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验