Suppr超能文献

生物电子转移中的反向反应、短路、泄漏和其他能量浪费反应:氧化还原调谐以在 O(2)中生存。

Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: redox tuning to survive life in O(2).

机构信息

Molecular Biosciences, Imperial College, London SW7 2AZ, UK.

出版信息

FEBS Lett. 2012 Mar 9;586(5):603-16. doi: 10.1016/j.febslet.2011.12.039. Epub 2012 Jan 13.

Abstract

The energy-converting redox enzymes perform productive reactions efficiently despite the involvement of high energy intermediates in their catalytic cycles. This is achieved by kinetic control: with forward reactions being faster than competing, energy-wasteful reactions. This requires appropriate cofactor spacing, driving forces and reorganizational energies. These features evolved in ancestral enzymes in a low O(2) environment. When O(2) appeared, energy-converting enzymes had to deal with its troublesome chemistry. Various protective mechanisms duly evolved that are not directly related to the enzymes' principal redox roles. These protective mechanisms involve fine-tuning of reduction potentials, switching of pathways and the use of short circuits, back-reactions and side-paths, all of which compromise efficiency. This energetic loss is worth it since it minimises damage from reactive derivatives of O(2) and thus gives the organism a better chance of survival. We examine photosynthetic reaction centres, bc(1) and b(6)f complexes from this view point. In particular, the evolution of the heterodimeric PSI from its homodimeric ancestors is explained as providing a protective back-reaction pathway. This "sacrifice-of-efficiency-for-protection" concept should be generally applicable to bioenergetic enzymes in aerobic environments.

摘要

尽管能量转换的氧化还原酶在其催化循环中涉及高能中间体,但它们仍能高效地进行生产性反应。这是通过动力学控制实现的:正向反应比竞争的、浪费能量的反应更快。这需要适当的辅助因子间隔、驱动力和重组能。这些特征是在低氧环境中的祖先酶中进化而来的。当氧气出现时,能量转换酶必须应对其麻烦的化学性质。各种保护机制随之进化,但与酶的主要氧化还原作用并不直接相关。这些保护机制涉及还原电位的微调、途径的切换以及短电路、反向反应和旁路的使用,所有这些都降低了效率。这种能量损失是值得的,因为它可以最大限度地减少来自氧气的反应衍生物的损害,从而使生物体有更好的生存机会。我们从这个角度检查光合作用反应中心、bc(1)和 b(6)f 复合物。特别是,解释了异二聚体 PSI 从其同源二聚体祖先进化而来,为提供了一种保护性的反向反应途径。这个“为了保护而牺牲效率”的概念应该普遍适用于需氧环境中的生物能酶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验