Bachtiar Luqman R, Unsworth Charles P, Newcomb Richard D, Crampin Edmund J
Department of Engineering Science, The University of Auckland, Auckland 1010, New Zealand.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2756-9. doi: 10.1109/IEMBS.2011.6090755.
Chemical descriptors are a way to define information concerning the physical, chemical and biological properties of a chemical compound. Machine learning methods such as the Artificial Neural Network (ANN) can be used to learn and predict such compounds by training on the compounds chemical descriptors. The motivation of our work is to predict odorant molecules for the development of an artificial biosensor. In this work, we demonstrate using a set of 32 optimized odorant descriptors how an assembly of MultiLayer Perceptrons (MLPs) can be successfully trained to differentiate among eight different chemical classes of odorant. In this communication, we demonstrate how it is possible to predict all 15/15 vectors from an unseen validation set with a high average prediction accuracy of 88.5% for the validation vectors. Furthermore, an introduction of a 10% noise injection level to the training set, increased the learning rate significantly as well as improve the average prediction accuracy of the MLPs to 92% for the validating vectors. Thus, this work indicates the promise of using odorant descriptor values to accurately predict chemical class and so move us forward to the realisation of an artificial odorant biosensor.
化学描述符是定义有关化合物物理、化学和生物学性质信息的一种方式。诸如人工神经网络(ANN)之类的机器学习方法可用于通过对化合物化学描述符进行训练来学习和预测此类化合物。我们工作的动机是为开发人工生物传感器预测气味分子。在这项工作中,我们展示了如何使用一组32个优化的气味描述符,成功训练多层感知器(MLP)组件以区分八种不同化学类别的气味剂。在本通讯中,我们展示了如何能够从一个未见的验证集中预测所有15/15个向量,对于验证向量,平均预测准确率高达88.5%。此外,向训练集引入10%的噪声注入水平,显著提高了学习率,并将MLP对验证向量的平均预测准确率提高到92%。因此,这项工作表明了使用气味描述符值准确预测化学类别的前景,从而推动我们朝着实现人工气味生物传感器迈进。