Suppr超能文献

用于检测患有神经震颤的患者在进行指鼻试验时运动意向性的一个质量参数。

A quality parameter for the detection of the intentionality of movement in patients with neurological tremor performing a finger-to-nose test.

作者信息

Giuliana Grimaldi, Mario Manto, Yassin Jdaoudi

机构信息

Unité d’Etude du Mouvement, Université Libre de Bruxelles-Erasme, Bruxelles, Belgium.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7707-10. doi: 10.1109/IEMBS.2011.6091899.

Abstract

The identification of the intentionality of movement is a key-aspect for the development of brain-computer interfaces (BCIs) applicable to daily life in neurological patients. We present a novel method of processing of electroencephalography (EEG) signals for the extraction of movement intention in neurological patients with upper limb tremor. This method is based on event-related EEG desynchronization, considering α (8-12 Hz), β (13-30 Hz), and γ (30-40 Hz) bands. We have analyzed the EEG signals from the sensorimotor areas of 4 neurological patients presenting an upper limb tremor (grade 1 to 3/4) and executing successive finger-to-nose movements. A Quality Parameter (QP) for the detection of intentionality of movement has been extracted, by considering: (a) the changes in the β²/α and β/α ratio (representing bursts of β-γ frequencies) during the pre-movement period; (b) an appropriate threshold predicting the movement; (c) the number of movements executed. This QP allows the prediction of the voluntary movement with a probability between 70% and 90%. This method could be implemented in a wearable BCI to detect the intentionality of movement and could be used, for instance, to trigger the electrical stimulation in selected muscles of upper limbs with the aim of blocking the emergence of tremor.

摘要

识别运动意图是开发适用于神经疾病患者日常生活的脑机接口(BCI)的关键方面。我们提出了一种处理脑电图(EEG)信号的新方法,用于提取上肢震颤神经疾病患者的运动意图。该方法基于事件相关的EEG去同步化,考虑α(8 - 12Hz)、β(13 - 30Hz)和γ(30 - 40Hz)频段。我们分析了4名患有上肢震颤(1至3/4级)并执行连续指鼻运动的神经疾病患者感觉运动区的EEG信号。通过考虑以下因素提取了用于检测运动意图的质量参数(QP):(a)运动前期β²/α和β/α比值(代表β - γ频率爆发)的变化;(b)预测运动的适当阈值;(c)执行的运动次数。该QP能够以70%至90%的概率预测自主运动。这种方法可以在可穿戴BCI中实现,以检测运动意图,例如可用于触发上肢选定肌肉的电刺激,以阻止震颤的出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验