Qazi Arish A, Kim John, Jaffray David A, Pekar Vladimir
Princess Margaret Hospital, Toronto, Canada.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7977-80. doi: 10.1109/IEMBS.2011.6091967.
Accuracy and robustness are fundamental requirements of any automated method used for segmentation of medical images. Model-based segmentation (MBS) is a well established technique, where uncertainties in image content can be to a certain extent compensated by the use of prior shape information. This approach is, however, often problematic in cases where image information does not allow for generating a strong feature response, one example being soft tissue organs in CT data, which typically appear in low contrast. In this paper, we enhance our recently proposed framework for voxel classification-based refinement of MBS using a level-set segmentation technique with shape priors. We also introduce a novel feature weighting methodology that improves the performance of the classifier, demonstrating results superior to the previous feature selection method. Results of fully automated segmentation of low contrast organs in head and neck CT are presented. Compared to our previous approach, we have achieved an increase of up to 22% in segmentation accuracy.