Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
Inorg Chem. 2012 Feb 20;51(4):2621-8. doi: 10.1021/ic202580m. Epub 2012 Jan 24.
The ternary arsenides A(2)Zn(2)As(3) and the quaternary derivatives A(2)Ag(2)ZnAs(3) (A = Sr, Eu) have been prepared by stoichiometric reaction of the elements at 800 °C. Compounds A(2)Zn(2)As(3) crystallize with the monoclinic Ba(2)Cd(2)Sb(3)-type structure (Pearson symbol mC28, space group C2/m, Z = 4; a = 16.212(5) Å, b = 4.275(1) Å, c = 11.955(3) Å, β = 126.271(3)° for Sr(2)Zn(2)As(3); a = 16.032(4) Å, b = 4.255(1) Å, c = 11.871(3) Å, β = 126.525(3)° for Eu(2)Zn(2)As(3)) in which CaAl(2)Si(2)-type fragments, built up of edge-sharing Zn-centered tetrahedra, are interconnected by homoatomic As-As bonds to form anionic slabs Zn(2)As(3) separated by A(2+) cations. Compounds A(2)Ag(2)ZnAs(3) crystallize with the monoclinic Yb(2)Zn(3)Ge(3)-type structure (Pearson symbol mC32, space group C2/m; a = 16.759(2) Å, b = 4.4689(5) Å, c = 12.202(1) Å, β = 127.058(1)° for Sr(2)Ag(2)ZnAs(3); a = 16.427(1) Å, b = 4.4721(3) Å, c = 11.9613(7) Å, β = 126.205(1)° for Eu(2)Ag(2)ZnAs(3)), which can be regarded as a stuffed derivative of the Ba(2)Cd(2)Sb(3)-type structure with additional transition-metal atoms in tetrahedral coordination inserted to link the anionic slabs together. The Ag and Zn atoms undergo disorder but with preferential occupancy over four sites centered in either tetrahedral or trigonal planar geometry. The site distribution of these metal atoms depends on a complex interplay of size and electronic factors. All compounds are Zintl phases. Band structure calculations predict that Sr(2)Zn(2)As(3) is a narrow band gap semiconductor and Sr(2)Ag(2)ZnAs(3) is a semimetal. Electrical resistivity measurements revealed band gaps of 0.04 eV for Sr(2)Zn(2)As(3) and 0.02 eV for Eu(2)Zn(2)As(3), the latter undergoing an apparent metal-to-semiconductor transition at 25 K.
三元砷化物 A(2)Zn(2)As(3) 和四元衍生物 A(2)Ag(2)ZnAs(3)(A = Sr,Eu)是通过元素在 800°C 下的化学计量反应制备的。化合物 A(2)Zn(2)As(3) 结晶为具有单斜 Ba(2)Cd(2)Sb(3)型结构(Pearson 符号 mC28,空间群 C2/m,Z = 4;a = 16.212(5) Å,b = 4.275(1) Å,c = 11.955(3) Å,β = 126.271(3)°,对于 Sr(2)Zn(2)As(3);a = 16.032(4) Å,b = 4.255(1) Å,c = 11.871(3) Å,β = 126.525(3)°,对于 Eu(2)Zn(2)As(3)),其中 CaAl(2)Si(2)型片段由边缘共享的 Zn 中心四面体构成,通过同原子 As-As 键相互连接形成阴离子片Zn(2)As(3),由 A(2+)阳离子隔开。化合物 A(2)Ag(2)ZnAs(3) 结晶为具有单斜 Yb(2)Zn(3)Ge(3)型结构(Pearson 符号 mC32,空间群 C2/m;a = 16.759(2) Å,b = 4.4689(5) Å,c = 12.202(1) Å,β = 127.058(1)°,对于 Sr(2)Ag(2)ZnAs(3);a = 16.427(1) Å,b = 4.4721(3) Å,c = 11.9613(7) Å,β = 126.205(1)°,对于 Eu(2)Ag(2)ZnAs(3)),可以看作是 Ba(2)Cd(2)Sb(3)型结构的填充衍生物,其中四面体配位的额外过渡金属原子插入以将阴离子片连接在一起。Ag 和 Zn 原子经历无序,但优先占据四面体或三角平面几何中心的四个位置。这些金属原子的位置分布取决于尺寸和电子因素的复杂相互作用。所有化合物均为 Zintl 相。能带结构计算预测 Sr(2)Zn(2)As(3)是窄带隙半导体,Sr(2)Ag(2)ZnAs(3)是半金属。电阻率测量表明 Sr(2)Zn(2)As(3)的能带隙为 0.04 eV,Eu(2)Zn(2)As(3)的能带隙为 0.02 eV,后者在 25 K 时经历明显的金属到半导体转变。