Thompson Paul G, Biris Claudiu G, Osley Edward J, Gaathon Ophir, Osgood Richard M, Panoiu Nicolae C, Warburton Paul A
1London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
Opt Express. 2011 Dec 5;19(25):25035-47. doi: 10.1364/OE.19.025035.
We demonstrate experimentally that by engineering the structural asymmetry of the primary unit cell of a symmetrically nanopatterned metallic film the optical transmission becomes strongly dependent on the polarization of the incident wave. By considering a specific plasmonic structure consisting of square arrays of nanoscale asymmetric cruciform apertures we show that the enhanced optical anisotropy is induced by the excitation inside the apertures of localized surface plasmon resonances. The measured transmission spectra of these plasmonic arrays show a transmission maximum whose spectral location can be tuned by almost 50% by simply varying the in-plane polarization of the incident photons. Comprehensive numerical simulations further prove that the maximum of the transmission spectra corresponds to polarization-dependent surface plasmon resonances tightly confined in the two arms of the cruciform aperture. Despite this, there are isosbestic points where the transmission, reflection, and absorption spectra are polarization-independent, regardless of the degree of asymmetry of the apertures.
我们通过实验证明,通过设计对称纳米图案化金属膜的基本单元结构不对称性,光传输变得强烈依赖于入射波的偏振。通过考虑由纳米级不对称十字形孔的方形阵列组成的特定等离子体结构,我们表明增强的光学各向异性是由局部表面等离子体共振在孔内的激发引起的。这些等离子体阵列的测量透射光谱显示出一个透射最大值,通过简单改变入射光子的面内偏振,其光谱位置可被调节近50%。综合数值模拟进一步证明,透射光谱的最大值对应于紧密限制在十字形孔两臂中的偏振相关表面等离子体共振。尽管如此,存在等吸收点,在这些点处,透射、反射和吸收光谱与偏振无关,而与孔的不对称程度无关。