Suppr超能文献

用于傅里叶域光学相干断层扫描的非均匀快速傅里叶变换中卷积核的选择

Selection of convolution kernel in non-uniform fast Fourier transform for Fourier domain optical coherence tomography.

作者信息

Chan Kenny K H, Tang Shuo

机构信息

Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada.

出版信息

Opt Express. 2011 Dec 19;19(27):26891-904. doi: 10.1364/OE.19.026891.

Abstract

Gridding based non-uniform fast Fourier transform (NUFFT) has recently been shown as an efficient method of processing non-linearly sampled data from Fourier-domain optical coherence tomography (FD-OCT). This method requires selecting design parameters, such as kernel function type, oversampling ratio and kernel width, to balance between computational complexity and accuracy. The Kaiser-Bessel (KB) and Gaussian kernels have been used independently on the NUFFT algorithm for FD-OCT. This paper compares the reconstruction error and speed for the optimization of these design parameters and justifies particular kernel choice for FD-OCT applications. It is found that for on-the-fly computation of the kernel function, the simpler Gaussian function offers a better accuracy-speed tradeoff. The KB kernel, however, is a better choice in the pre-computed kernel mode of NUFFT, in which the processing speed is no longer dependent on the kernel function type. Finally, the algorithm is used to reconstruct in-vivo images of a human finger at a camera limited 50k A-line/s.

摘要

基于网格的非均匀快速傅里叶变换(NUFFT)最近被证明是一种处理来自傅里叶域光学相干断层扫描(FD - OCT)的非线性采样数据的有效方法。该方法需要选择设计参数,如核函数类型、过采样率和核宽度,以在计算复杂度和准确性之间取得平衡。Kaiser - Bessel(KB)核和高斯核已分别用于FD - OCT的NUFFT算法。本文比较了这些设计参数优化时的重建误差和速度,并论证了FD - OCT应用中特定核的选择。研究发现,对于核函数的实时计算,更简单的高斯函数在准确性和速度之间有更好的权衡。然而,在NUFFT的预计算核模式下,KB核是更好的选择,在这种模式下处理速度不再依赖于核函数类型。最后,该算法用于以相机限制的50k A线/秒的速度重建人体手指的体内图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验