Suppr超能文献

用于磁导向细胞递药的复合可生物降解磁性纳米粒子的制剂及体外特性研究。

Formulation and in vitro characterization of composite biodegradable magnetic nanoparticles for magnetically guided cell delivery.

机构信息

Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.

出版信息

Pharm Res. 2012 May;29(5):1232-41. doi: 10.1007/s11095-012-0675-y. Epub 2012 Jan 25.

Abstract

PURPOSE

Cells modified with magnetically responsive nanoparticles (MNP) can provide the basis for novel targeted therapeutic strategies. However, improvements are required in the MNP design and cell treatment protocols to provide adequate magnetic properties in balance with acceptable cell viability and function. This study focused on select variables controlling the uptake and cell compatibility of biodegradable polymer-based MNP in cultured endothelial cells.

METHODS

Fluorescent-labeled MNP were formed using magnetite and polylactide as structural components. Their magnetically driven sedimentation and uptake were studied fluorimetrically relative to cell viability in comparison to non-magnetic control conditions. The utility of surface-activated MNP forming affinity complexes with replication-deficient adenovirus (Ad) for transduction achieved concomitantly with magnetic cell loading was examined using the green fluorescent protein reporter.

RESULTS

A high-gradient magnetic field was essential for sedimentation and cell binding of albumin-stabilized MNP, the latter being rate-limiting in the MNP loading process. Cell loading up to 160 pg iron oxide per cell was achievable with cell viability >90%. Magnetically driven uptake of MNP-Ad complexes can provide high levels of transgene expression potentially useful for a combined cell/gene therapy.

CONCLUSIONS

Magnetically responsive endothelial cells for targeted delivery applications can be obtained rapidly and efficiently using composite biodegradable MNP.

摘要

目的

经过磁响应纳米粒子(MNP)修饰的细胞可为新型靶向治疗策略提供基础。然而,需要改进 MNP 设计和细胞处理方案,以在可接受的细胞活力和功能的基础上提供足够的磁性能。本研究集中于控制培养的内皮细胞中基于可生物降解聚合物的 MNP 的摄取和细胞相容性的选择变量。

方法

使用磁铁矿和聚丙交酯作为结构成分形成荧光标记的 MNP。相对于非磁性对照条件,通过荧光法研究了其相对于细胞活力的磁驱动沉降和摄取。使用绿色荧光蛋白报告基因,研究了表面活化的 MNP 与复制缺陷型腺病毒(Ad)形成亲和复合物以同时进行转导的能力,同时进行磁性细胞加载。

结果

高梯度磁场对于白蛋白稳定的 MNP 的沉降和细胞结合至关重要,后者是 MNP 加载过程中的限速步骤。可以实现高达 160pg 氧化铁/细胞的细胞加载,而细胞活力>90%。MNP-Ad 复合物的磁驱动摄取可以提供高水平的转基因表达,这对于联合细胞/基因治疗可能是有用的。

结论

使用复合可生物降解 MNP 可以快速有效地获得用于靶向递药应用的磁响应性内皮细胞。

相似文献

3
Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles.
FASEB J. 2007 Aug;21(10):2510-9. doi: 10.1096/fj.06-8070com. Epub 2007 Apr 2.
6
Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles.
J Control Release. 2010 Aug 17;146(1):144-51. doi: 10.1016/j.jconrel.2010.05.003. Epub 2010 May 18.
7
Magnetically enhanced cell delivery for accelerating recovery of the endothelium in injured arteries.
J Control Release. 2016 Jan 28;222:169-75. doi: 10.1016/j.jconrel.2015.12.025. Epub 2015 Dec 17.
8
A Smart Magnetically Active Nanovehicle for on-Demand Targeted Drug Delivery: Where van der Waals Force Balances the Magnetic Interaction.
ACS Appl Mater Interfaces. 2015 Nov 4;7(43):24229-41. doi: 10.1021/acsami.5b07706. Epub 2015 Oct 20.
10

引用本文的文献

1
Nanocarrier Design for Dual-Targeted Therapy of In-Stent Restenosis.
Pharmaceutics. 2024 Jan 29;16(2):188. doi: 10.3390/pharmaceutics16020188.
3
Robust Chemical Strategy for Stably Labeling Polyester-Based Nanoparticles with BODIPY Fluorophores.
ACS Appl Polym Mater. 2022 Feb 11;4(2):1196-1206. doi: 10.1021/acsapm.1c01601. Epub 2022 Jan 6.
4
Selective Retinoic Acid Receptor γ Antagonist 7C is a Potent Enhancer of BMP-Induced Ectopic Endochondral Bone Formation.
Front Cell Dev Biol. 2022 Mar 14;10:802699. doi: 10.3389/fcell.2022.802699. eCollection 2022.
5
Experimental Single-Platform Approach to Enhance the Functionalization of Magnetically Targetable Cells.
ACS Appl Bio Mater. 2020 Jun 15;3(6):3914-3922. doi: 10.1021/acsabm.0c00466. Epub 2020 May 21.
9
Magnetically enhanced cell delivery for accelerating recovery of the endothelium in injured arteries.
J Control Release. 2016 Jan 28;222:169-75. doi: 10.1016/j.jconrel.2015.12.025. Epub 2015 Dec 17.
10
Real-time analysis of composite magnetic nanoparticle disassembly in vascular cells and biomimetic media.
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4245-50. doi: 10.1073/pnas.1324104111. Epub 2014 Mar 3.

本文引用的文献

1
Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes.
Biomaterials. 2012 Jan;33(1):256-69. doi: 10.1016/j.biomaterials.2011.09.028. Epub 2011 Oct 5.
2
Magnetic nanoparticles for targeted vascular delivery.
IUBMB Life. 2011 Aug;63(8):613-20. doi: 10.1002/iub.479. Epub 2011 Jun 30.
3
Nanomedicine's promising therapy: magnetic drug targeting.
Expert Rev Med Devices. 2011 May;8(3):291-4. doi: 10.1586/erd.10.94.
5
Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling.
Biomaterials. 2011 Jan;32(1):195-205. doi: 10.1016/j.biomaterials.2010.08.075. Epub 2010 Sep 22.
6
Boosting oncolytic adenovirus potency with magnetic nanoparticles and magnetic force.
Mol Pharm. 2010 Aug 2;7(4):1069-89. doi: 10.1021/mp100123t.
7
Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields.
Proc Natl Acad Sci U S A. 2010 May 4;107(18):8346-51. doi: 10.1073/pnas.0909506107. Epub 2010 Apr 19.
8
Site-specific gene therapy for cardiovascular disease.
Curr Opin Drug Discov Devel. 2010 Mar;13(2):203-13.
9
Magnetic tagging increases delivery of circulating progenitors in vascular injury.
JACC Cardiovasc Interv. 2009 Aug;2(8):794-802. doi: 10.1016/j.jcin.2009.05.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验