Suppr超能文献

化学癌症风险评估中的数据和文献收集。

Data and literature gathering in chemical cancer risk assessment.

机构信息

Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

出版信息

Integr Environ Assess Manag. 2012 Jul;8(3):412-7. doi: 10.1002/ieam.1278. Epub 2012 Mar 13.

Abstract

In recent years, chemical cancer risk assessment has faced major challenges: the demand for cancer risk assessment has grown considerably with strict legislation regarding chemical safety, whereas cancer hazard identification has turned increasingly complex due to the rapid development and high publication rate in biomedical sciences. Thus, much of the scientific evidence required for hazard identification is hidden in large collections of biomedical literature. Extensive guidelines have been produced to support cancer risk assessment under these circumstances. We evaluated whether these guidelines support the first, critical step of this task--data and literature gathering--and found that the guidance is vague. We propose ways to improve data and literature gathering for cancer risk assessment and suggest developing a computational literature search and analysis tool dedicated to the task. We describe the first prototype tool we have developed and discuss how it could help to improve the quality, consistency, and effectiveness of cancer risk assessment when developed further. Fully reliable automatic data and literature gathering may not be realistic; the retrieved articles will always need to be examined further by risk assessors. However, our proposal offers a starting point for improved data and literature gathering that can benefit the whole cancer risk assessment process.

摘要

近年来,化学癌症风险评估面临着重大挑战:由于对化学安全的严格立法,癌症风险评估的需求大幅增长,而由于生物医学科学的快速发展和高出版率,癌症危害识别变得越来越复杂。因此,危害识别所需的大部分科学证据都隐藏在大量的生物医学文献中。已经制定了广泛的指南来支持这种情况下的癌症风险评估。我们评估了这些指南是否支持该任务的第一个关键步骤——数据和文献收集,并发现该指南比较模糊。我们提出了改进癌症风险评估的数据和文献收集的方法,并建议开发专门用于该任务的计算文献搜索和分析工具。我们描述了我们开发的第一个原型工具,并讨论了它在进一步开发时如何帮助提高癌症风险评估的质量、一致性和有效性。完全可靠的自动数据和文献收集可能不现实;检索到的文章仍需要由风险评估人员进一步检查。然而,我们的建议为改进数据和文献收集提供了一个起点,这将使整个癌症风险评估过程受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验