Suppr超能文献

皮摩尔浓度的游离锌(II)离子调节受体蛋白酪氨酸磷酸酶 β 的活性。

Picomolar concentrations of free zinc(II) ions regulate receptor protein-tyrosine phosphatase β activity.

机构信息

Division of Diabetes and Nutritional Sciences, School of Medicine, King's College London, London, United Kingdom.

出版信息

J Biol Chem. 2012 Mar 16;287(12):9322-6. doi: 10.1074/jbc.C111.320796. Epub 2012 Jan 24.

Abstract

As key enzymes in the regulation of biological phosphorylations, protein-tyrosine phosphatases are central to the control of cellular signaling and metabolism. Zinc(II) ions are known to inhibit these enzymes, but the physiological significance of this inhibition has remained elusive. Employing metal buffering for strict metal control and performing a kinetic analysis, we now demonstrate that zinc(II) ions are reversible inhibitors of the cytoplasmic catalytic domain of the receptor protein-tyrosine phosphatase β (also known as vascular endothelial protein-tyrosine phosphatase). The K(i)((Zn)) value is 21 ± 7 pm, 6 orders of magnitude lower than zinc inhibition reported previously for this enzyme. It exceeds the affinity of the most potent synthetic small molecule inhibitors targeting these enzymes. Inhibition is in the range of cellular zinc(II) ion concentrations, suggesting that zinc regulates this enzyme, which is involved in vascular physiology and angiogenesis. Thus, for some enzymes that are not recognized as zinc metalloenzymes, zinc binding inhibits rather than activates as in classical zinc enzymes. Activation then requires removal of the inhibitory zinc.

摘要

作为生物磷酸化调节的关键酶,蛋白酪氨酸磷酸酶对于细胞信号转导和代谢的控制至关重要。锌离子已知可以抑制这些酶,但这种抑制的生理意义一直难以捉摸。我们通过金属缓冲严格控制金属,并进行动力学分析,现在证明锌离子是受体蛋白酪氨酸磷酸酶β(也称为血管内皮蛋白酪氨酸磷酸酶)细胞质催化结构域的可逆抑制剂。K(i)((Zn)) 值为 21 ± 7 pm,比先前报道的该酶的锌抑制高出 6 个数量级。它超过了针对这些酶的最有效合成小分子抑制剂的亲和力。抑制作用处于细胞内锌离子浓度的范围内,表明锌调节了这种参与血管生理学和血管生成的酶。因此,对于一些未被认为是锌金属酶的酶,锌结合抑制而不是激活,如经典的锌酶。然后需要去除抑制性锌以实现激活。

相似文献

1
Picomolar concentrations of free zinc(II) ions regulate receptor protein-tyrosine phosphatase β activity.
J Biol Chem. 2012 Mar 16;287(12):9322-6. doi: 10.1074/jbc.C111.320796. Epub 2012 Jan 24.
2
Inhibitory zinc sites in enzymes.
Biometals. 2013 Apr;26(2):197-204. doi: 10.1007/s10534-013-9613-7. Epub 2013 Mar 1.
3
The interactions of metal cations and oxyanions with protein tyrosine phosphatase 1B.
Biometals. 2017 Aug;30(4):517-527. doi: 10.1007/s10534-017-0019-9. Epub 2017 May 24.
4
Inhibition of the lymphoid tyrosine phosphatase: the effect of zinc(II) ions and chelating ligand fragments on enzymatic activity.
Bioorg Med Chem Lett. 2014 Aug 15;24(16):4019-22. doi: 10.1016/j.bmcl.2014.06.016. Epub 2014 Jun 16.
5
Zinc ions modulate protein tyrosine phosphatase 1B activity.
Metallomics. 2014 Jul;6(7):1229-39. doi: 10.1039/c4mt00086b.
6
Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells.
Am J Respir Cell Mol Biol. 1999 Sep;21(3):357-64. doi: 10.1165/ajrcmb.21.3.3656.
7
Anaplastic lymphoma kinase: "Ligand Independent Activation" mediated by the PTN/RPTPβ/ζ signaling pathway.
Biochim Biophys Acta. 2013 Oct;1834(10):2219-23. doi: 10.1016/j.bbapap.2013.06.004. Epub 2013 Jun 15.
8
Inhibitory sites in enzymes: zinc removal and reactivation by thionein.
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):1936-40. doi: 10.1073/pnas.96.5.1936.
9
Protein tyrosine phosphatase receptor type γ is a JAK phosphatase and negatively regulates leukocyte integrin activation.
J Immunol. 2015 Mar 1;194(5):2168-79. doi: 10.4049/jimmunol.1401841. Epub 2015 Jan 26.

引用本文的文献

1
Input-specific bidirectional regulation of hippocampal CA3 pyramidal cell excitability.
J Physiol. 2025 Jul;603(14):4005-4025. doi: 10.1113/JP288350. Epub 2025 Jun 19.
3
Zinc deficiency as possible link between immunosenescence and age-related diseases.
Immun Ageing. 2025 May 19;22(1):19. doi: 10.1186/s12979-025-00511-1.
4
The Arcana of Zinc.
J Nutr. 2025 Mar;155(3):669-675. doi: 10.1016/j.tjnut.2025.01.004. Epub 2025 Jan 8.
5
Zinc Protects against Swine Barn Dust-Induced Cilia Slowing.
Biomolecules. 2024 Jul 12;14(7):843. doi: 10.3390/biom14070843.
6
Advances in Organic Fluorescent Probes for Intracellular Zn Detection and Bioimaging.
Molecules. 2024 May 28;29(11):2542. doi: 10.3390/molecules29112542.
7
Targeting Biometals in Alzheimer's Disease with Metal Chelating Agents Including Coumarin Derivatives.
CNS Drugs. 2024 Jul;38(7):507-532. doi: 10.1007/s40263-024-01093-0. Epub 2024 Jun 3.
8
Zinc Supplementation Improves ZIP14 (SLC39A14) Levels in Cerebral Cortex Suppressed by icv-STZ Injection.
Noro Psikiyatr Ars. 2024 Feb 20;61(1):11-14. doi: 10.29399/npa.28426. eCollection 2024.
9
Phosphatase and Pseudo-Phosphatase Functions of Phosphatase of Regenerating Liver 3 (PRL-3) Are Insensitive to Divalent Metals In Vitro.
ACS Omega. 2023 Aug 9;8(33):30578-30589. doi: 10.1021/acsomega.3c04095. eCollection 2023 Aug 22.
10
Zinc Inhibits the GABAR/ATPase during Postnatal Rat Development: The Role of Cysteine Residue.
Int J Mol Sci. 2023 Feb 1;24(3):2764. doi: 10.3390/ijms24032764.

本文引用的文献

1
Redox biochemistry of mammalian metallothioneins.
J Biol Inorg Chem. 2011 Oct;16(7):1079-86. doi: 10.1007/s00775-011-0800-0. Epub 2011 Jun 7.
2
Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7351-6. doi: 10.1073/pnas.1015686108. Epub 2011 Apr 18.
3
4
Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory.
Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3366-70. doi: 10.1073/pnas.1019166108. Epub 2011 Jan 18.
5
A practical guide to the preparation of Ca(2+) buffers.
Methods Cell Biol. 2010;99:1-26. doi: 10.1016/B978-0-12-374841-6.00001-3.
6
PTP1B: a double agent in metabolism and oncogenesis.
Trends Biochem Sci. 2010 Aug;35(8):442-9. doi: 10.1016/j.tibs.2010.03.004. Epub 2010 Apr 8.
7
Insights into the reaction of protein-tyrosine phosphatase 1B: crystal structures for transition state analogs of both catalytic steps.
J Biol Chem. 2010 May 21;285(21):15874-83. doi: 10.1074/jbc.M109.066951. Epub 2010 Mar 16.
8
Toxicological disruption of signaling homeostasis: tyrosine phosphatases as targets.
Annu Rev Pharmacol Toxicol. 2010;50:215-35. doi: 10.1146/annurev.pharmtox.010909.105841.
9
Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis.
Nat Methods. 2009 Oct;6(10):737-40. doi: 10.1038/nmeth.1368. Epub 2009 Aug 30.
10
Transient fluctuations of intracellular zinc ions in cell proliferation.
Exp Cell Res. 2009 Aug 15;315(14):2463-70. doi: 10.1016/j.yexcr.2009.05.016. Epub 2009 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验