Theoretical Chemistry Group, CMI, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
J Comput Chem. 2012 Mar 30;33(8):911-3; discussion 914-5. doi: 10.1002/jcc.22924. Epub 2012 Jan 25.
We comment on the paper [Song et al., J. Comput. Chem. 2009, 30, 399]. and discuss the efficiency of the orbital optimization and gradient evaluation in the Valence Bond Self Consistent Field (VBSCF) method. We note that Song et al. neglect to properly reference Broer et al., who published an algorithm [Broer and Nieuwpoort, Theor. Chim. Acta 1988, 73, 405] to use a Fock matrix to compute a matrix element between two different determinants, which can be used for an orbital optimization. Further, Song et al. publish a misleading comparison with our VBSCF algorithm [Dijkstra and van Lenthe, J. Chem. Phys. 2000, 113, 2100; van Lenthe et al., Mol. Phys. 1991, 73, 1159] to enable them to favorably compare their algorithm with ours. We give detail timings in terms of different orbital types in the calculation and actual timings for the example cases.
我们评论了 [Song 等人,J. Comput. Chem. 2009, 30, 399] 这篇论文,并讨论了价键自洽场 (VBSCF) 方法中轨道优化和梯度评估的效率。我们注意到 Song 等人没有正确引用 Broer 等人的工作,后者发表了一种算法 [Broer 和 Nieuwpoort,Theor. Chim. Acta 1988, 73, 405],用于使用 Fock 矩阵计算两个不同行列式之间的矩阵元,这可用于轨道优化。此外,Song 等人发表了一项具有误导性的比较,将他们的算法与我们的 VBSCF 算法 [Dijkstra 和 van Lenthe,J. Chem. Phys. 2000, 113, 2100;van Lenthe 等人,Mol. Phys. 1991, 73, 1159] 进行比较,以便能够有利地比较他们的算法与我们的算法。我们给出了计算中不同轨道类型的详细时间和实际示例案例的时间。