Suppr超能文献

乳腺癌的个性化治疗。

Personalized therapy in breast cancer.

作者信息

Marmé Frederik, Schneeweiss Andreas

机构信息

Department of Gynaecology and Obstetrics, National Center for Tumour Diseases, University of Heidelberg, Germany.

出版信息

Onkologie. 2012;35 Suppl 1:28-33. doi: 10.1159/000334973. Epub 2012 Jan 20.

Abstract

Systemic treatment of non-metastatic breast cancer is based on endocrine therapy, cytotoxic chemotherapy, and molecular targeted therapy - with the major problems of immense overtreatment of patients who would not relapse without systemic therapy and the failure of treatment in others whose disease still recurs. These deficits can only be overcome by the identification of new and better prognostic and predictive markers. Currently, adjuvant treatment stratification is based on a limited number of established factors, namely locoregional tumour stage, age, grade, expression of hormone receptors, HER2, and Ki-67. Molecular profiling techniques, however, have revolutionized our understanding of breast cancer as a heterogeneous disease. Future results from even more comprehensive genetic analyses as part of the coordinated cancer genome projects will help to develop better treatment stratifications and new therapeutic approaches. Efforts to realize the dream of a personalized treatment for breast cancer will include drug development and intelligent design of trials for increasingly small subgroups of patients with specific host and disease characteristics. This will only be made possible by a strong cooperation between basic researchers and translational scientists, clinicians, as well as academia and industry.

摘要

非转移性乳腺癌的全身治疗基于内分泌治疗、细胞毒性化疗和分子靶向治疗,主要问题是对那些未经全身治疗就不会复发的患者进行了过度治疗,而对另一些疾病仍复发的患者治疗失败。只有通过识别新的、更好的预后和预测标志物才能克服这些不足。目前,辅助治疗分层基于有限的几个既定因素,即局部区域肿瘤分期、年龄、分级、激素受体表达、HER2和Ki-67。然而,分子谱分析技术彻底改变了我们对乳腺癌作为一种异质性疾病的理解。作为协调癌症基因组计划一部分的更全面基因分析的未来结果将有助于制定更好的治疗分层和新的治疗方法。实现乳腺癌个性化治疗梦想的努力将包括药物研发以及针对具有特定宿主和疾病特征的越来越小患者亚组进行智能试验设计。这只有通过基础研究人员与转化科学家、临床医生以及学术界和产业界之间的紧密合作才能实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验