Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
Ground Water. 2013 Jan-Feb;51(1):14-28. doi: 10.1111/j.1745-6584.2012.00911.x. Epub 2012 Jan 30.
We investigated the role of increasingly well-constrained geologic structures in the subsurface (i.e., subsurface architecture) in predicting streambed flux and hyporheic residence time distribution (RTD) for a headwater stream. Five subsurface realizations with increasingly resolved lithological boundaries were simulated in which model geometries were based on increasing information about flow and transport using soil and geologic maps, surface observations, probing to depth to refusal, seismic refraction, electrical resistivity (ER) imaging of subsurface architecture, and time-lapse ER imaging during a solute tracer study. Particle tracking was used to generate RTDs for each model run. We demonstrate how improved characterization of complex lithological boundaries and calibration of porosity and hydraulic conductivity affect model prediction of hyporheic flow and transport. Models using hydraulic conductivity calibrated using transient ER data yield estimates of streambed flux that are three orders of magnitude larger than uncalibrated models using estimated values for hydraulic conductivity based on values published for nearby hillslopes (10(-4) vs. 10(-7) m(2)/s, respectively). Median residence times for uncalibrated and calibrated models are 10(3) and 10(0) h, respectively. Increasingly well-resolved subsurface architectures yield wider hyporheic RTDs, indicative of more complex hyporheic flowpath networks and potentially important to biogeochemical cycling. The use of ER imaging to monitor solute tracers informs subsurface structure not apparent from other techniques, and helps to define transport properties of the subsurface (i.e., hydraulic conductivity). Results of this study demonstrate the value of geophysical measurements to more realistically simulate flow and transport along hyporheic flowpaths.
我们研究了地下(即地下结构)中构造约束越来越强的地质结构在预测溪流床通量和潜流区停留时间分布(RTD)方面的作用。模拟了具有越来越精细的岩性边界的五个地下实例,其中模型几何形状是基于使用土壤和地质图、地表观测、探测至拒绝深度、地震折射、地下结构的电阻率(ER)成像以及示踪剂研究期间的时移 ER 成像来增加对流动和传输的了解。使用粒子跟踪生成了每个模型运行的 RTD。我们展示了如何改进复杂岩性边界的描述和孔隙度和水力传导率的校准,从而影响对潜流流动和传输的模型预测。使用瞬变 ER 数据校准水力传导率的模型产生的溪流床通量估计值比使用基于附近山坡公布值估算的水力传导率的未校准模型大三个数量级(分别为 10(-4)和 10(-7) m(2)/s)。未校准和校准模型的中位停留时间分别为 10(3)和 10(0)小时。地下结构的分辨率越高,潜流 RTD 越宽,表明潜流路径网络越复杂,对生物地球化学循环可能很重要。使用 ER 成像监测示踪剂有助于了解其他技术不明显的地下结构,并有助于定义地下的传输特性(即水力传导率)。这项研究的结果表明,地球物理测量在更真实地模拟沿潜流路径的流动和传输方面具有价值。